Suppr超能文献

使用卷积神经网络实现5G车对车通信的交接

Handover for V2V communication in 5G using convolutional neural networks.

作者信息

Alhammad Sarah M, Khafaga Doaa Sami, Elsayed Mahmoud M, Khashaba Marwa M, Hosny Khalid M

机构信息

Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, 44159, Egypt.

出版信息

Heliyon. 2024 Jul 26;10(15):e35269. doi: 10.1016/j.heliyon.2024.e35269. eCollection 2024 Aug 15.

Abstract

Vehicle communication is one of the most vital aspects of modern transportation systems because it enables real-time data transmission between vehicles and infrastructure to improve traffic flow and road safety. The next generation of mobile technology, 5G, was created to address earlier generations' growing need for high data rates and quality of service issues. 5G cellular technology aims to eliminate penetration loss by segregating outside and inside settings and allowing extremely high transmission speeds, achieved by installing hundreds of dispersed antenna arrays using a distributed antenna system (DAS). Huge multiple-input multiple-output (MIMO) systems are accomplished via DASs and huge MIMO systems, where hundreds of dispersed antenna arrays are built. Because deep learning (DL) techniques employ artificial neural networks with at least one hidden layer, they are used in this study for vehicle recognition. They can swiftly process vast quantities of labeled training data to identify features. Therefore, this paper employed the VGG19 DL model through transfer learning to address the task of vehicle detection and obstacle identification. It also proposes a novel horizontal handover prediction method based on channel characteristics. The suggested techniques are designed for heterogeneous networks or horizontal handovers using DL. In the designated surrounding regions of 5G environments, the suggested detection and handover algorithms identified vehicles with a success rate of 97 % and predicted the next station for handover.

摘要

车辆通信是现代交通系统中最重要的方面之一,因为它能够实现车辆与基础设施之间的实时数据传输,以改善交通流量和道路安全。下一代移动技术5G的出现,是为了解决早期几代人对高数据速率和服务质量问题日益增长的需求。5G蜂窝技术旨在通过区分室外和室内环境并实现极高的传输速度来消除穿透损耗,这是通过使用分布式天线系统(DAS)安装数百个分散的天线阵列来实现的。通过DAS和大规模多输入多输出(MIMO)系统可以实现巨大的MIMO系统,其中构建了数百个分散的天线阵列。由于深度学习(DL)技术采用具有至少一个隐藏层的人工神经网络,因此在本研究中用于车辆识别。它们可以快速处理大量带标签的训练数据以识别特征。因此,本文通过迁移学习采用VGG19 DL模型来解决车辆检测和障碍物识别任务。本文还提出了一种基于信道特性的新型水平切换预测方法。所建议的技术是为使用DL的异构网络或水平切换而设计的。在5G环境的指定周边区域中,所建议的检测和切换算法识别车辆的成功率为97%,并预测下一个切换站点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6ee/11336472/b932b3d912a3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验