Suppr超能文献

基层医疗环境中用于检测可疑色素沉着性皮肤病变的深度学习算法:系统评价与荟萃分析

Deep Learning Algorithms for the Detection of Suspicious Pigmented Skin Lesions in Primary Care Settings: A Systematic Review and Meta-Analysis.

作者信息

Abdalla Ahmed R, Hageen Ahmed W, Saleh Haneen H, Al-Azzawi Omar, Ghalab Mahmoud, Harraz Amani, Eldoqsh Bola S, Elawady Fatma E, Alhammadi Ayman H, Elmorsy Hesham Hassan, Jano Majd, Elmasry Mohamed, Bahbah Eshak I, Elgebaly Ahmed

机构信息

Vascular Surgery, Faculty of Medicine, Mansoura University, Mansoura, EGY.

Artificial Intelligence Research Group, MedDots Academy, Cairo, EGY.

出版信息

Cureus. 2024 Jul 22;16(7):e65122. doi: 10.7759/cureus.65122. eCollection 2024 Jul.

Abstract

Early detection of suspicious pigmented skin lesions is crucial for improving the outcomes and survival rates of skin cancers. However, the accuracy of clinical diagnosis by primary care physicians (PCPs) is suboptimal, leading to unnecessary referrals and biopsies. In recent years, deep learning (DL) algorithms have shown promising results in the automated detection and classification of skin lesions. This systematic review and meta-analysis aimed to evaluate the diagnostic performance of DL algorithms for the detection of suspicious pigmented skin lesions in primary care settings. A comprehensive literature search was conducted using electronic databases, including PubMed, Scopus, IEEE Xplore, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science. Data from eligible studies were extracted, including study characteristics, sample size, algorithm type, sensitivity, specificity, diagnostic odds ratio (DOR), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and receiver operating characteristic curve analysis. Three studies were included. The results showed that DL algorithms had a high sensitivity (90%, 95% CI: 90-91%) and specificity (85%, 95% CI: 84-86%) for detecting suspicious pigmented skin lesions in primary care settings. Significant heterogeneity was observed in both sensitivity (p = 0.0062, I = 80.3%) and specificity (p < 0.001, I = 98.8%). The analysis of DOR and PLR further demonstrated the strong diagnostic performance of DL algorithms. The DOR was 26.39, indicating a strong overall diagnostic performance of DL algorithms. The PLR was 4.30, highlighting the ability of these algorithms to influence diagnostic outcomes positively. The NLR was 0.16, indicating that a negative test result decreased the odds of misdiagnosis. The area under the curve of DL algorithms was 0.95, indicating excellent discriminative ability in distinguishing between benign and malignant pigmented skin lesions. DL algorithms have the potential to significantly improve the detection of suspicious pigmented skin lesions in primary care settings. Our analysis showed that DL exhibited promising performance in the early detection of suspicious pigmented skin lesions. However, further studies are needed.

摘要

早期发现可疑色素沉着性皮肤病变对于改善皮肤癌的治疗效果和生存率至关重要。然而,初级保健医生(PCP)进行临床诊断的准确性并不理想,导致不必要的转诊和活检。近年来,深度学习(DL)算法在皮肤病变的自动检测和分类方面显示出了有前景的结果。本系统评价和荟萃分析旨在评估DL算法在初级保健环境中检测可疑色素沉着性皮肤病变的诊断性能。使用电子数据库进行了全面的文献检索,包括PubMed、Scopus、IEEE Xplore、Cochrane对照试验中央注册库(CENTRAL)和科学网。提取了符合条件的研究数据,包括研究特征、样本量、算法类型、敏感性、特异性、诊断比值比(DOR)、阳性似然比(PLR)、阴性似然比(NLR)以及受试者工作特征曲线分析。纳入了三项研究。结果表明,DL算法在初级保健环境中检测可疑色素沉着性皮肤病变具有较高的敏感性(90%,95%CI:90 - 91%)和特异性(85%,95%CI:84 - 86%)。在敏感性(p = 0.0062,I² = 80.3%)和特异性(p < 0.001,I² = 98.8%)方面均观察到显著的异质性。对DOR和PLR的分析进一步证明了DL算法强大的诊断性能。DOR为26.39,表明DL算法具有强大的总体诊断性能。PLR为4.30,突出了这些算法对诊断结果产生积极影响的能力。NLR为0.16,表明阴性检测结果降低了误诊的几率。DL算法的曲线下面积为0.95,表明在区分良性和恶性色素沉着性皮肤病变方面具有出色的鉴别能力。DL算法有潜力显著改善初级保健环境中可疑色素沉着性皮肤病变的检测。我们的分析表明,DL在可疑色素沉着性皮肤病变的早期检测中表现出有前景的性能。然而,还需要进一步的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f008/11338545/eccbf991f4d3/cureus-0016-00000065122-i01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验