Li Yuanyuan, Zhang Zhenyan, Dai Cong, Dong Qiang, Badrigilan Samireh
Department of Imaging, Yidu Central Hospital of Weifang, Weifang, 262500, China.
Department of Imaging, Qingzhou Hospital of Traditional Chinese Medicine, Qingzhou, 262500, China.
Comput Biol Med. 2020 Aug;123:103898. doi: 10.1016/j.compbiomed.2020.103898. Epub 2020 Jul 14.
Recently, deep learning (DL) algorithms have received widespread popularity in various medical diagnostics. This study aimed to evaluate the diagnostic performance of DL models in the detection and classifying of pneumonia using chest X-ray (CXR) images.
PubMed, Embase, Scopus, Web of Science, and Google Scholar were searched in order to retrieve all studies that implemented a DL algorithm for discriminating pneumonia patients from healthy controls using CXR images. We used bivariate linear mixed models to pool diagnostic estimates including sensitivity (SE), specificity (SP), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Also, the area under receiver operating characteristics curves (AUC) of the included studies was used to estimate the diagnostic value.
The pooled SE, SP, PLR, NLR, DOR and AUC for DL in discriminating pneumonia CXRs from controls were 0.98 (95% confidence interval (CI): 0.96-0.99), 0.94 (95% CI: 0.90-0.96), 15.35 (95% CI: 10.04-23.48), 0.02 (95% CI: 0.01-0.04), 718.13 (95% CI: 288.45-1787.93), and 0.99 (95% CI: 0.98-100), respectively. The pooled SE, SP, PLR, NLR, DOR and AUC for DL in discriminating bacterial from viral pneumonia using CXR radiographs were 0.89 (95% CI: 0.79-0.94), 0.89 (95% CI: 0.78-0.95), 8.34 (95% CI: 3.75-18.55), 0.13 (95% CI: 0.06-0.26), 66.14 (95% CI: 17.34-252.37), and 0.95 (0.93-0.97).
DL indicated high accuracy performance in classifying pneumonia from normal CXR radiographs and also in distinguishing bacterial from viral pneumonia. However, major methodological concerns should be addressed in future studies for translating to the clinic.
近年来,深度学习(DL)算法在各种医学诊断中广受欢迎。本研究旨在评估DL模型在使用胸部X线(CXR)图像检测和分类肺炎方面的诊断性能。
检索了PubMed、Embase、Scopus、Web of Science和谷歌学术,以获取所有使用DL算法通过CXR图像区分肺炎患者与健康对照的研究。我们使用双变量线性混合模型汇总诊断估计值,包括敏感性(SE)、特异性(SP)、阳性似然比(PLR)、阴性似然比(NLR)和诊断比值比(DOR)。此外,纳入研究的受试者工作特征曲线下面积(AUC)用于估计诊断价值。
DL区分肺炎CXR与对照的汇总SE、SP、PLR、NLR、DOR和AUC分别为0.98(95%置信区间(CI):0.96 - 0.99)、0.94(95%CI:0.90 - 0.96)、15.35(95%CI:10.04 - 23.48)、0.02(95%CI:0.01 - 0.04)、718.13(95%CI:288.45 - 1787.93)和0.99(95%CI:0.98 - 1.00)。DL使用CXR胸片区分细菌性肺炎与病毒性肺炎的汇总SE、SP、PLR、NLR、DOR和AUC分别为0.89(95%CI:0.79 - 0.94)、0.89(95%CI:0.78 - 0.95)、8.34(95%CI:3.75 - 18.55)、0.13(95%CI:0.06 - 0.26)、66.14(95%CI:17.34 - 252.37)和0.95(0.93 - 0.97)。
DL在从正常CXR胸片中分类肺炎以及区分细菌性肺炎与病毒性肺炎方面显示出较高的准确性。然而,未来研究若要转化应用于临床,应解决主要的方法学问题。