Suppr超能文献

预测并比较生活方式干预对活跃人群中饮食失调个体的长期影响:一项机器学习评估

Predicting and comparing the long-term impact of lifestyle interventions on individuals with eating disorders in active population: a machine learning evaluation.

作者信息

Irandoust Khadijeh, Parsakia Kamdin, Estifa Ali, Zoormand Gholamreza, Knechtle Beat, Rosemann Thomas, Weiss Katja, Taheri Morteza

机构信息

Department of Sport Sciences, Imam Khomeini International University, Qazvin, Iran.

Department of Psychology and Counseling, KMAN Research Institute, Richmond Hill, ON, Canada.

出版信息

Front Nutr. 2024 Aug 7;11:1390751. doi: 10.3389/fnut.2024.1390751. eCollection 2024.

Abstract

OBJECTIVE

This study aims to evaluate and predict the long-term effectiveness of five lifestyle interventions for individuals with eating disorders using machine learning techniques.

METHODS

This study, conducted at Dr. Irandoust's Health Center at Qazvin from August 2021 to August 2023, aimed to evaluate the effects of five lifestyle interventions on individuals with eating disorders, initially diagnosed using The Eating Disorder Diagnostic Scale (EDDS). The interventions were: (1) Counseling, exercise, and dietary regime, (2) Aerobic exercises with dietary regime, (3) Walking and dietary regime, (4) Exercise with a flexible diet, and (5) Exercises through online programs and applications. Out of 955 enrolled participants, 706 completed the study, which measured Body Fat Percentage (BFP), Waist-Hip Ratio (WHR), Fasting Blood Sugar (FBS), Low-Density Lipoprotein (LDL) Cholesterol, Total Cholesterol (CHO), Weight, and Triglycerides (TG) at baseline, during, and at the end of the intervention. Random Forest and Gradient Boosting Regressors, following feature engineering, were used to analyze the data, focusing on the interventions' long-term effectiveness on health outcomes related to eating disorders.

RESULTS

Feature engineering with Random Forest and Gradient Boosting Regressors, respectively, reached an accuracy of 85 and 89%, then 89 and 90% after dataset balancing. The interventions were ranked based on predicted effectiveness: counseling with exercise and dietary regime, aerobic exercises with dietary regime, walking with dietary regime, exercise with a flexible diet, and exercises through online programs.

CONCLUSION

The results show that Machine Learning (ML) models effectively predicted the long-term effectiveness of lifestyle interventions. The current study suggests a significant potential for tailored health strategies. This emphasizes the most effective interventions for individuals with eating disorders. According to the results, it can also be suggested to expand demographics and geographic locations of participants, longer study duration, exploring advanced machine learning techniques, and including psychological and social adherence factors. Ultimately, these results can guide healthcare providers and policymakers in creating targeted lifestyle intervention strategies, emphasizing personalized health plans, and leveraging machine learning for predictive healthcare solutions.

摘要

目的

本研究旨在使用机器学习技术评估和预测针对饮食失调个体的五种生活方式干预措施的长期效果。

方法

本研究于2021年8月至2023年8月在加兹温的伊兰杜斯特博士健康中心进行,旨在评估五种生活方式干预措施对饮食失调个体的影响,这些个体最初使用饮食失调诊断量表(EDDS)进行诊断。干预措施包括:(1)咨询、运动和饮食方案;(2)有氧运动与饮食方案;(3)散步与饮食方案;(4)灵活饮食的运动;(5)通过在线程序和应用进行的运动。在955名登记参与者中,706人完成了研究,该研究在干预开始时、进行期间和结束时测量了体脂百分比(BFP)、腰臀比(WHR)、空腹血糖(FBS)、低密度脂蛋白(LDL)胆固醇、总胆固醇(CHO)、体重和甘油三酯(TG)。在进行特征工程后,使用随机森林和梯度提升回归器对数据进行分析,重点关注干预措施对与饮食失调相关的健康结果的长期效果。

结果

分别使用随机森林和梯度提升回归器进行特征工程时,准确率分别达到85%和89%,在数据集平衡后分别达到89%和90%。根据预测效果对干预措施进行了排名:咨询与运动和饮食方案、有氧运动与饮食方案、散步与饮食方案、灵活饮食的运动、通过在线程序进行的运动。

结论

结果表明,机器学习(ML)模型有效地预测了生活方式干预措施的长期效果。当前研究表明了定制健康策略的巨大潜力。这强调了针对饮食失调个体的最有效干预措施。根据结果,还可以建议扩大参与者的人口统计学和地理位置范围、延长研究持续时间、探索先进的机器学习技术,并纳入心理和社会依从性因素。最终,这些结果可以指导医疗保健提供者和政策制定者制定有针对性的生活方式干预策略,强调个性化健康计划,并利用机器学习实现预测性医疗保健解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/858e/11337873/30f19f2b5112/fnut-11-1390751-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验