Laboratory of Environmental Virology, School of Architecture, Civil & Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
mSphere. 2024 Sep 25;9(9):e0041424. doi: 10.1128/msphere.00414-24. Epub 2024 Aug 22.
The composition of respiratory fluids influences the stability of viruses in exhaled aerosol particles and droplets, though the role of respiratory organics in modulating virus stability remains poorly understood. This study investigates the effect of organic compounds on the stability of influenza A virus (IAV) in deposited droplets. We compare the infectivity loss of IAV at different relative humidities (RHs) over the course of 1 h in 1-µL droplets consisting of phosphate-buffered saline (without organics), synthetic lung fluid, or nasal mucus (both containing organics). We show that IAV stability increases with increasing organic:salt ratios. Among the various organic species, proteins are identified as the most protective component, with smaller proteins stabilizing IAV more efficiently at the same mass concentration. Organics act by both increasing the efflorescence RH and shortening the drying period until efflorescence at a given RH. This research advances our mechanistic understanding of how organics stabilize exhaled viruses and thus influence their inactivation in respiratory droplets.
This study investigates how the composition of respiratory fluids affects the stability of viruses in exhaled droplets. Understanding virus stability in droplets is important as it impacts how viruses spread and how we can combat them. We focus on influenza A virus (IAV) and investigate how different organic compounds found in lung fluid and nasal mucus protect the virus from inactivation. We demonstrate that the ratio of organics to salt in the fluid is an indicator of IAV stability. Among organics, small proteins are particularly effective at protecting IAV. Their effect is in part explained by the proteins' influence on the crystallization of salts in the droplets, thereby shielding the viruses from prolonged exposure to harmful salt concentrations. Understanding these mechanisms helps us grasp how viruses sustain their infectivity over time in respiratory droplets, contributing to efforts in controlling infectious diseases.
呼吸道液的组成影响呼出气溶胶颗粒和液滴中病毒的稳定性,尽管呼吸道有机物在调节病毒稳定性方面的作用仍知之甚少。本研究调查了有机化合物对沉积液滴中甲型流感病毒(IAV)稳定性的影响。我们比较了在 1 小时的过程中,在磷酸盐缓冲盐水(不含有机物)、合成肺液或鼻黏液(均含有有机物)组成的 1µL 液滴中,IAV 在不同相对湿度(RH)下的感染性丧失。我们表明,IAV 的稳定性随有机:盐比的增加而增加。在各种有机物质中,蛋白质被鉴定为最具保护性的成分,在相同的质量浓度下,较小的蛋白质更有效地稳定 IAV。有机物通过增加开花 RH 和缩短在给定 RH 下开花前的干燥期来发挥作用。这项研究增进了我们对有机物如何稳定呼出病毒以及因此影响其在呼吸道液滴中失活的机制理解。
本研究调查了呼吸道液的组成如何影响呼出液滴中病毒的稳定性。了解液滴中病毒的稳定性很重要,因为它会影响病毒的传播方式以及我们如何对抗病毒。我们专注于甲型流感病毒(IAV),并研究了肺部液和鼻黏液中发现的不同有机化合物如何保护病毒免受失活。我们表明,液中有机物与盐的比例是 IAV 稳定性的一个指标。在有机物中,小蛋白质特别有效地保护 IAV。它们的作用部分解释了蛋白质对液滴中盐结晶的影响,从而使病毒免受长时间暴露于有害盐浓度的影响。了解这些机制有助于我们理解病毒在呼吸道液滴中随时间保持感染性的机制,为控制传染病的努力做出贡献。