Suppr超能文献

RNAVirHost:一种基于机器学习的方法,通过病毒基因组预测 RNA 病毒的宿主。

RNAVirHost: a machine learning-based method for predicting hosts of RNA viruses through viral genomes.

机构信息

Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong (SAR), China.

Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.

出版信息

Gigascience. 2024 Jan 2;13. doi: 10.1093/gigascience/giae059.

Abstract

BACKGROUND

The high-throughput sequencing technologies have revolutionized the identification of novel RNA viruses. Given that viruses are infectious agents, identifying hosts of these new viruses carries significant implications for public health and provides valuable insights into the dynamics of the microbiome. However, determining the hosts of these newly discovered viruses is not always straightforward, especially in the case of viruses detected in environmental samples. Even for host-associated samples, it is not always correct to assign the sample origin as the host of the identified viruses. The process of assigning hosts to RNA viruses remains challenging due to their high mutation rates and vast diversity.

RESULTS

In this study, we introduce RNAVirHost, a machine learning-based tool that predicts the hosts of RNA viruses solely based on viral genomes. RNAVirHost is a hierarchical classification framework that predicts hosts at different taxonomic levels. We demonstrate the superior accuracy of RNAVirHost in predicting hosts of RNA viruses through comprehensive comparisons with various state-of-the-art techniques. When applying to viruses from novel genera, RNAVirHost achieved the highest accuracy of 84.3%, outperforming the alignment-based strategy by 12.1%.

CONCLUSIONS

The application of machine learning models has proven beneficial in predicting hosts of RNA viruses. By integrating genomic traits and sequence homologies, RNAVirHost provides a cost-effective and efficient strategy for host prediction. We believe that RNAVirHost can greatly assist in RNA virus analyses and contribute to pandemic surveillance.

摘要

背景

高通量测序技术彻底改变了新型 RNA 病毒的鉴定。鉴于病毒是传染性病原体,鉴定这些新病毒的宿主对公共卫生具有重要意义,并为微生物组的动态提供了有价值的见解。然而,确定这些新发现病毒的宿主并不总是那么简单,特别是在环境样本中检测到病毒的情况下。即使对于与宿主相关的样本,将样本来源分配为鉴定病毒的宿主也并不总是正确的。由于 RNA 病毒的高突变率和巨大的多样性,将宿主分配给 RNA 病毒的过程仍然具有挑战性。

结果

在这项研究中,我们引入了基于机器学习的工具 RNAVirHost,该工具仅根据病毒基因组即可预测 RNA 病毒的宿主。RNAVirHost 是一个分层分类框架,可预测不同分类水平的宿主。我们通过与各种最先进技术的全面比较,证明了 RNAVirHost 在预测 RNA 病毒宿主方面的卓越准确性。在应用于新型属的病毒时,RNAVirHost 实现了最高的 84.3%的准确性,比基于比对的策略高出 12.1%。

结论

机器学习模型的应用已被证明有助于预测 RNA 病毒的宿主。通过整合基因组特征和序列同源性,RNAVirHost 为宿主预测提供了一种具有成本效益且高效的策略。我们相信,RNAVirHost 可以极大地协助 RNA 病毒分析,并为大流行监测做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7063/11340644/8b55ec379b0f/giae059fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验