Kong Youyong, Zhang Xiaotong, Wang Wenhan, Zhou Yue, Li Yueying, Yuan Yonggui
IEEE Trans Med Imaging. 2025 Jan;44(1):475-488. doi: 10.1109/TMI.2024.3448214. Epub 2025 Jan 2.
Many neuropsychiatric disorders are considered to be associated with abnormalities in the functional connectivity networks of the brain. The research on the classification of functional connectivity can therefore provide new perspectives for understanding the pathology of disorders and contribute to early diagnosis and treatment. Functional connectivity exhibits a nature of dynamically changing over time, however, the majority of existing methods are unable to collectively reveal the spatial topology and time-varying characteristics. Furthermore, despite the efforts of limited spatial-temporal studies to capture rich information across different spatial scales, they have not delved into the temporal characteristics among different scales. To address above issues, we propose a novel Multi-Scale Spatial-Temporal Attention Networks (MSSTAN) to exploit the multi-scale spatial-temporal information provided by functional connectome for classification. To fully extract spatial features of brain regions, we propose a Topology Enhanced Graph Transformer module to guide the attention calculations in the learning of spatial features by incorporating topology priors. A Multi-Scale Pooling Strategy is introduced to obtain representations of brain connectome at various scales. Considering the temporal dynamic characteristics between dynamic functional connectome, we employ Locality Sensitive Hashing attention to further capture long-term dependencies in time dynamics across multiple scales and reduce the computational complexity of the original attention mechanism. Experiments on three brain fMRI datasets of MDD and ASD demonstrate the superiority of our proposed approach. In addition, benefiting from the attention mechanism in Transformer, our results are interpretable, which can contribute to the discovery of biomarkers. The code is available at https://github.com/LIST-KONG/MSSTAN.
许多神经精神疾病被认为与大脑功能连接网络的异常有关。因此,对功能连接分类的研究可以为理解疾病的病理提供新的视角,并有助于早期诊断和治疗。功能连接具有随时间动态变化的特性,然而,大多数现有方法无法同时揭示其空间拓扑结构和时变特征。此外,尽管有限的时空研究努力在不同空间尺度上捕捉丰富信息,但它们尚未深入研究不同尺度之间的时间特征。为了解决上述问题,我们提出了一种新颖的多尺度时空注意力网络(MSSTAN),以利用功能连接组提供的多尺度时空信息进行分类。为了充分提取脑区的空间特征,我们提出了一种拓扑增强图变换器模块,通过纳入拓扑先验来指导空间特征学习中的注意力计算。引入了一种多尺度池化策略,以获得不同尺度下脑连接组的表示。考虑到动态功能连接组之间存在的时间动态特性,我们采用局部敏感哈希注意力进一步捕捉多尺度时间动态中的长期依赖关系,并降低原始注意力机制的计算复杂度。在三个关于抑郁症和自闭症的脑功能磁共振成像数据集上进行的实验证明了我们提出的方法的优越性。此外,受益于Transformer中的注意力机制,我们的结果具有可解释性,这有助于生物标志物的发现。代码可在https://github.com/LIST-KONG/MSSTAN获取。