Suppr超能文献

基于克隆性造血突变的肺癌血液筛查面板的开发方法。

An approach for developing a blood-based screening panel for lung cancer based on clonal hematopoietic mutations.

机构信息

Edward Via College of Osteopathic Medicine, Biomedical Sciences, Blacksburg, Virginia, United States of America.

Maryland-Virginia College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America.

出版信息

PLoS One. 2024 Aug 22;19(8):e0307232. doi: 10.1371/journal.pone.0307232. eCollection 2024.

Abstract

Early detection can significantly reduce mortality due to lung cancer. Presented here is an approach for developing a blood-based screening panel based on clonal hematopoietic mutations. Animal model studies suggest that clonal hematopoietic mutations in tumor infiltrating immune cells can modulate cancer progression, representing potential predictive biomarkers. The goal of this study was to determine if the clonal expansion of these mutations in blood samples could predict the occurrence of lung cancer. A set of 98 potentially pathogenic clonal hematopoietic mutations in tumor infiltrating immune cells were identified using sequencing data from lung cancer samples. These mutations were used as predictors to develop a logistic regression machine learning model. The model was tested on sequencing data from a separate set of 578 lung cancer and 545 non-cancer samples from 18 different cohorts. The logistic regression model correctly classified lung cancer and non-cancer blood samples with 94.12% sensitivity (95% Confidence Interval: 92.20-96.04%) and 85.96% specificity (95% Confidence Interval: 82.98-88.95%). Our results suggest that it may be possible to develop an accurate blood-based lung cancer screening panel using this approach. Unlike most other "liquid biopsies" currently under development, the approach presented here is based on standard sequencing protocols and uses a relatively small number of rationally selected mutations as predictors.

摘要

早期检测可以显著降低肺癌死亡率。本文提出了一种基于克隆性造血突变开发基于血液的筛选面板的方法。动物模型研究表明,肿瘤浸润免疫细胞中的克隆性造血突变可以调节癌症进展,代表潜在的预测生物标志物。本研究的目的是确定这些突变在血液样本中的克隆扩增是否可以预测肺癌的发生。使用来自肺癌样本的测序数据,鉴定了一组 98 种潜在致病性肿瘤浸润免疫细胞中的克隆性造血突变。这些突变被用作预测因子来开发逻辑回归机器学习模型。该模型在来自 18 个不同队列的 578 个肺癌和 545 个非癌症样本的测序数据上进行了测试。逻辑回归模型对肺癌和非癌症血液样本的分类准确率为 94.12%(95%置信区间:92.20-96.04%),特异性为 85.96%(95%置信区间:82.98-88.95%)。我们的研究结果表明,使用这种方法可能有可能开发出一种准确的基于血液的肺癌筛查面板。与目前正在开发的大多数其他“液体活检”不同,这里提出的方法基于标准测序方案,并使用相对较少的经过合理选择的突变作为预测因子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b637/11341013/f73abdcee6c9/pone.0307232.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验