Suppr超能文献

区域红树林植被碳储量预测整合无人机激光雷达和卫星数据。

Regional mangrove vegetation carbon stocks predicted integrating UAV-LiDAR and satellite data.

机构信息

Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, 510006, China.

Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou, 510006, China.

出版信息

J Environ Manage. 2024 Sep;368:122101. doi: 10.1016/j.jenvman.2024.122101. Epub 2024 Aug 21.

Abstract

Using satellite RS data predicting mangrove vegetation carbon stock (MVC) is the popular and efficient approach at a large scale to protect mangroves and promote carbon trading. Satellite data have performed poorly in predicting MVC due to saturation issues. UAV-LiDAR data overcomes these limitations by providing detailed structural vegetation information. However, how to cross-scale integration of UAV-LiDAR and satellite RS data and the selection of features and machine learning methods hampered the practitioner in making a lightweight but efficient model to predict the MVC. Our study integrated UAV-LiDAR, Sentinel-1, and Sentinel-2 to extract spectral, structural, and textural features at the regional scale. We estimated the influences of different combinations between three vegetation features and machine learning methods (Support Vector Machine (SVM), Random Forest (RF), Gradient Boosting Regression Tree (GBDT), and Extreme Gradient Regression Tree (XGBOOST)) on the results of MVC prediction, and constructed a framework for estimating mangrove vegetation aboveground (ACG) and belowground (BCG) carbon storage in Zhanjiang, the largest mangrove area of China. Our research shows: 1) Compared to using satellite remote sensing (RS), integrating UAV and satellite RS data and fusing multiple vegetation features significantly improved the accuracy of mangrove vegetation carbon stock (MVC) predictions. 2) Structural features, particularly canopy height retrieved from UAV and satellite RS, are essential indicators for predicting MVC. Combined with spectral and structural features, regional MVC was precisely predicted. 3)Although the influence of different machine learning methods on MVC prediction was not significant, XGBOOST demonstrated relatively high precision. We recommend that mangrove practitioners integrate UAV and satellite RS data to predict MVC at a regional scale. Importantly, governments should prioritize the application of UAV-LiDAR in forestry monitoring and establish a long-term mangrove monitoring database to aid in estimating blue carbon resources and promoting blue carbon trading.

摘要

利用卫星遥感数据预测红树林植被碳储量(MVC)是保护红树林和促进碳交易的一种大规模、流行且高效的方法。由于饱和度问题,卫星数据在预测 MVC 方面表现不佳。无人机激光雷达数据通过提供详细的结构植被信息克服了这些限制。然而,如何跨尺度整合无人机激光雷达和卫星遥感数据,以及选择特征和机器学习方法,阻碍了从业者构建轻量级但高效的模型来预测 MVC。我们的研究整合了无人机激光雷达、Sentinel-1 和 Sentinel-2,以在区域尺度上提取光谱、结构和纹理特征。我们估计了三种植被特征与机器学习方法(支持向量机(SVM)、随机森林(RF)、梯度提升回归树(GBDT)和极端梯度提升回归树(XGBOOST))之间不同组合对 MVC 预测结果的影响,并构建了一个框架来估计中国最大的红树林地区湛江的红树林地上(ACG)和地下(BCG)碳储量。我们的研究表明:1)与使用卫星遥感相比,整合无人机和卫星遥感数据并融合多种植被特征显著提高了红树林植被碳储量(MVC)预测的准确性。2)结构特征,特别是从无人机和卫星遥感中获取的冠层高度,是预测 MVC 的重要指标。结合光谱和结构特征,精确预测了区域 MVC。3)虽然不同机器学习方法对 MVC 预测的影响不显著,但 XGBOOST 表现出相对较高的精度。我们建议红树林从业者整合无人机和卫星遥感数据来预测区域尺度的 MVC。重要的是,政府应优先考虑在林业监测中应用无人机激光雷达,并建立长期的红树林监测数据库,以协助估计蓝碳资源并促进蓝碳交易。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验