Suppr超能文献

使用具有实验应力-应变和压力-体积数据的肺泡簇模型确定肺泡壁超弹性材料特性。

Alveolar wall hyperelastic material properties determined using alveolar cluster model with experimental stress-stretch and pressure-volume data.

机构信息

University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

Unity Health Toronto, Toronto, Ontario, Canada.

出版信息

J Mech Behav Biomed Mater. 2024 Nov;159:106685. doi: 10.1016/j.jmbbm.2024.106685. Epub 2024 Aug 10.

Abstract

Micro-scale models of lung tissue have been employed by researchers to investigate alveolar mechanics; however, they have been limited by the lack of biofidelic material properties for the alveolar wall. To address this challenge, a finite element model of an alveolar cluster was developed comprising a tetrakaidecahedron array with the nominal characteristics of human alveolar structure. Lung expansion was simulated in the model by prescribing a pressure and monitoring the volume, to produce a pressure-volume (PV) response that could be compared to experimental PV data. The alveolar wall properties in the model were optimized to match experimental PV response of lungs filled with saline, to eliminate surface tension effects and isolate the alveolar wall tissue response. When simulated in uniaxial tension, the model was in agreement with reported experimental properties of uniaxial tension on excised lung tissue. The work presented herein was able to link micro-scale alveolar response to two disparate macroscopic experimental datasets (stress-stretch and PV response of lung) and presents hyperelastic properties of the alveolar wall for use in alveolar scale finite element models and multi-scale models. Future research will incorporate surface tension effects, and investigate alveolar injury mechanisms.

摘要

研究人员已经使用肺组织的微观模型来研究肺泡力学;然而,由于缺乏生物逼真的肺泡壁材料特性,这些模型受到了限制。为了解决这一挑战,开发了一种肺泡簇的有限元模型,该模型由具有人肺泡结构标称特性的十四面体阵列组成。通过规定压力并监测体积来模拟肺扩张,从而产生可与实验 PV 数据进行比较的压力-体积 (PV) 响应。对模型中的肺泡壁特性进行了优化,以匹配用盐水填充的肺的实验 PV 响应,以消除表面张力效应并隔离肺泡壁组织的响应。当在单轴拉伸中进行模拟时,该模型与报道的离体肺组织单轴拉伸实验特性一致。本文的工作能够将微观肺泡反应与两个截然不同的宏观实验数据集(肺的应力-应变和 PV 响应)联系起来,并为肺泡尺度有限元模型和多尺度模型提供肺泡壁的超弹性特性。未来的研究将纳入表面张力效应,并研究肺泡损伤机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验