Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA.
Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA; Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA.
Am J Hum Genet. 2024 Sep 5;111(9):1899-1913. doi: 10.1016/j.ajhg.2024.07.017. Epub 2024 Aug 21.
Understanding the molecular mechanisms of complex traits is essential for developing targeted interventions. We analyzed liver expression quantitative-trait locus (eQTL) meta-analysis data on 1,183 participants to identify conditionally distinct signals. We found 9,013 eQTL signals for 6,564 genes; 23% of eGenes had two signals, and 6% had three or more signals. We then integrated the eQTL results with data from 29 cardiometabolic genome-wide association study (GWAS) traits and identified 1,582 GWAS-eQTL colocalizations for 747 eGenes. Non-primary eQTL signals accounted for 17% of all colocalizations. Isolating signals by conditional analysis prior to coloc resulted in 37% more colocalizations than using marginal eQTL and GWAS data, highlighting the importance of signal isolation. Isolating signals also led to stronger evidence of colocalization: among 343 eQTL-GWAS signal pairs in multi-signal regions, analyses that isolated the signals of interest resulted in higher posterior probability of colocalization for 41% of tests. Leveraging allelic heterogeneity, we predicted causal effects of gene expression on liver traits for four genes. To predict functional variants and regulatory elements, we colocalized eQTL with liver chromatin accessibility QTL (caQTL) and found 391 colocalizations, including 73 with non-primary eQTL signals and 60 eQTL signals that colocalized with both a caQTL and a GWAS signal. Finally, we used publicly available massively parallel reporter assays in HepG2 to highlight 14 eQTL signals that include at least one expression-modulating variant. This multi-faceted approach to unraveling the genetic underpinnings of liver-related traits could lead to therapeutic development.
理解复杂性状的分子机制对于开发靶向干预措施至关重要。我们分析了 1183 名参与者的肝脏表达数量性状基因座(eQTL)荟萃分析数据,以识别条件性差异信号。我们发现了 6564 个基因的 9013 个 eQTL 信号;23%的 eGenes 有两个信号,6%有三个或更多信号。然后,我们将 eQTL 结果与 29 个心脏代谢全基因组关联研究(GWAS)性状的数据进行整合,确定了 747 个 eGenes 的 1582 个 GWAS-eQTL 共定位。非主要 eQTL 信号占所有共定位的 17%。在共定位之前通过条件分析分离信号比使用边缘 eQTL 和 GWAS 数据导致 37%的共定位增加,突出了信号分离的重要性。分离信号还导致了更强的共定位证据:在多信号区域的 343 个 eQTL-GWAS 信号对中,对感兴趣的信号进行分离分析的结果导致 41%的测试的共定位后验概率更高。利用等位基因异质性,我们预测了四个基因的基因表达对肝脏性状的因果影响。为了预测基因表达的功能变体和调控元件,我们将 eQTL 与肝脏染色质可及性 QTL(caQTL)进行了共定位,发现了 391 个共定位,包括 73 个非主要 eQTL 信号和 60 个 eQTL 信号与 caQTL 和 GWAS 信号共定位。最后,我们使用 HepG2 中的公共大规模平行报告测定法来突出 14 个 eQTL 信号,其中至少包含一个表达调节变体。这种多方面的方法可以揭示与肝脏相关的性状的遗传基础,并可能导致治疗方法的发展。
Am J Hum Genet. 2024-9-5
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2021-4-19
PLoS Comput Biol. 2025-9-2
bioRxiv. 2025-8-5
Nucleic Acids Res. 2024-1-5
Nucleic Acids Res. 2024-1-5
Cell Genom. 2022-12-14
Nucleic Acids Res. 2023-1-6
Nucleic Acids Res. 2023-1-6
Sci Rep. 2022-9-7
Arterioscler Thromb Vasc Biol. 2022-9
PLoS Genet. 2022-7