Suppr超能文献

利用 PTS 工程化葡萄糖代谢促进木醋杆菌高效合成细菌纤维素。

Engineering PTS-based glucose metabolism for efficient biosynthesis of bacterial cellulose by Komagataeibacter xylinus.

机构信息

State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.

State Key Laboratory of Food Nutrition &Safety, Tianjin University of Science and Technology, Tianjin 300457, PR China; Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin 300457, PR China.

出版信息

Carbohydr Polym. 2024 Nov 1;343:122459. doi: 10.1016/j.carbpol.2024.122459. Epub 2024 Jul 4.

Abstract

Bacterial cellulose (BC) is a renewable biomaterial that has attracted significant attention due to its excellent properties and wide applications. Komagataeibacter xylinus CGMCC 2955 is an important BC-producing strain. It primarily produces BC from glucose while simultaneously generating gluconic acid as a by-product, which acidifies the medium and inhibits BC synthesis. To enhance glucose uptake and BC synthesis, we reconstructed the phosphoenolpyruvate-dependent glucose phosphotransferase system (PTS) and strengthened glycolysis by introducing heterologous genes, resulting in a recombinant strain (GX08PTS03; Δgcd::ptsHIcrr::ptsG::pfkA). Strain GX08PTS03 efficiently utilized glucose for BC production without accumulating gluconic acid. Subsequently, the fermentation process was systematically optimized. Under optimal conditions, strain GX08PTS03 produced 7.74 g/L of BC after 6 days of static fermentation, with a BC yield of 0.39 g/g glucose, which were 87.41 % and 77.27 % higher than those of the wild-type strain, respectively. The BC produced by strain GX08PTS03 exhibited a longer fiber diameter along with a lower porosity, significantly higher solid content, crystallinity, tensile strength, and Young's modulus. This study is novel in reporting that the engineered PTS-based glucose metabolism could effectively enhance the production and properties of BC, providing a future outlook for the biopolymer industry.

摘要

细菌纤维素(BC)是一种可再生的生物材料,由于其优异的性能和广泛的应用而受到了极大的关注。木醋杆菌 CGMCC 2955 是一种重要的 BC 生产菌株。它主要以葡萄糖为原料生产 BC,同时产生葡萄糖酸作为副产物,使培养基酸化并抑制 BC 合成。为了提高葡萄糖的摄取和 BC 的合成,我们通过引入异源基因对磷酸烯醇丙酮酸依赖的葡萄糖磷酸转移酶系统(PTS)进行了重构,并加强了糖酵解作用,从而构建了一个重组菌株(GX08PTS03;Δgcd::ptsHIcrr::ptsG::pfkA)。该菌株 GX08PTS03 能够有效地利用葡萄糖生产 BC,而不会积累葡萄糖酸。随后,对发酵过程进行了系统优化。在最佳条件下,菌株 GX08PTS03 在静态发酵 6 天后生产了 7.74 g/L 的 BC,BC 得率为 0.39 g/g 葡萄糖,分别比野生型菌株提高了 87.41%和 77.27%。由菌株 GX08PTS03 生产的 BC 具有更长的纤维直径和更低的孔隙率,显著更高的固体含量、结晶度、拉伸强度和杨氏模量。本研究的新颖之处在于报告了基于工程 PTS 的葡萄糖代谢可以有效地提高 BC 的生产和性能,为生物聚合物行业提供了未来的展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验