Miao Liangtian, Feng Wei, Ren Jiaxun, Sun Keke, Li Guoqiang, Jiang Huifeng
Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
Synth Syst Biotechnol. 2025 May 27;10(3):1050-1058. doi: 10.1016/j.synbio.2025.05.012. eCollection 2025 Sep.
Bacterial cellulose (BC), a robust and highly crystalline nanomaterial composed of glucose polymers, exhibits exceptional properties including superior water retention capacity, biocompatibility, and customizable mechanical strength, positioning it as a promising candidate for advanced material applications. To harness its full potential, we developed a synthetic biology platform for engineering -a hyperproductive BC synthesis strain. First, we systematically characterized a library of regulatory elements (promoters, ribosome binding sites, and terminators, etc.) in this chassis, demonstrating tunable expression intensities ranging from 1.84 % to 169 % relative to the canonical promoter. Subsequently, we established a high-efficiency CRISPR/Cas9-mediated scarless genome editing system through coordinated optimization of λ Red recombinase and Cas9 nuclease expression, achieving near-perfect editing efficiency (≈100 %). This system was functionally validated by targeted knockout of key genes (, , and ), with scanning electron microscopy analysis confirming the BC synthesis deficiency in Δ and Δ mutants. The integration of these genetic tools-comprising tunable expression modules and precision genome-editing capabilities-provides a comprehensive toolkit for reprogramming to produce next-generation cellulose-based functional materials with tailored properties.
细菌纤维素(BC)是一种由葡萄糖聚合物组成的坚固且高度结晶的纳米材料,具有卓越的性能,包括优异的保水能力、生物相容性和可定制的机械强度,使其成为先进材料应用的有前途的候选材料。为了充分发挥其潜力,我们开发了一个用于工程改造的合成生物学平台——一种高产BC合成菌株。首先,我们系统地表征了该底盘中调控元件(启动子、核糖体结合位点和终止子等)的文库,证明相对于标准启动子,表达强度可在1.84%至169%之间调节。随后,我们通过协调优化λ Red重组酶和Cas9核酸酶的表达,建立了一种高效的CRISPR/Cas9介导的无痕基因组编辑系统,实现了近乎完美的编辑效率(≈100%)。通过对关键基因(、和)进行靶向敲除对该系统进行了功能验证,扫描电子显微镜分析证实了Δ和Δ突变体中BC合成缺陷。这些遗传工具(包括可调表达模块和精确基因组编辑能力)的整合提供了一个全面的工具包,用于对进行重新编程,以生产具有定制特性的下一代纤维素基功能材料。