Baghdasaryan Ofelya, Contreras-Llano Luis E, Khan Shahid, Wang Aijun, Hu Che-Ming Jack, Tan Cheemeng
Biomedical Engineering, University of California Davis, Davis, CA, USA.
Department of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA.
Nat Protoc. 2024 Dec;19(12):3613-3639. doi: 10.1038/s41596-024-01035-6. Epub 2024 Aug 22.
The production of living therapeutics, cell-based delivery of drugs and gene-editing tools and the manufacturing of bio-commodities all share a common concept: they use either a synthetic or a living cell chassis to achieve their primary engineering or therapeutic goal. Live-cell chassis face limitations inherent to their auto-replicative nature and the complexity of the cellular context. This limitation highlights the need for a new chassis combining the engineering simplicity of synthetic materials and the functionalities of natural cells. Here, we describe a protocol to assemble a synthetic polymeric network inside bacterial cells, rendering them incapable of cell division and allowing them to resist environmental stressors such as high pH, hydrogen peroxide and cell-wall-targeting antibiotics that would otherwise kill unmodified bacteria. This cellular bioengineering protocol details how bacteria can be transformed into single-lifespan devices that are resistant to environmental stressors and possess programable functionality. We designate the modified bacteria as cyborg bacterial cells. This protocol expands the synthetic biology toolset, conferring precise control over living cells and creating a versatile cell chassis for biotechnology, biomedical engineering and living therapeutics. The protocol, including the preparation of gelation reagents and chassis strain, can be completed in 4 d. The implementation of the protocol requires expertise in microbiology techniques, hydrogel chemistry, fluorescence microscopy and flow cytometry. Further functionalization of the cyborg bacterial cells and adaptation of the protocol requires skills ranging from synthetic genetic circuit engineering to hydrogel polymerization chemistries.
活疗法的生产、基于细胞的药物递送和基因编辑工具以及生物商品的制造都有一个共同的概念:它们使用合成或活细胞底盘来实现其主要的工程或治疗目标。活细胞底盘面临着其自身复制性质所固有的局限性以及细胞环境的复杂性。这种局限性凸显了对一种新型底盘的需求,这种底盘要结合合成材料的工程简易性和天然细胞的功能。在这里,我们描述了一种在细菌细胞内组装合成聚合物网络的方案,使它们无法进行细胞分裂,并使它们能够抵抗环境应激源,如高pH值、过氧化氢和靶向细胞壁的抗生素,否则这些会杀死未修饰的细菌。这种细胞生物工程方案详细说明了细菌如何被转化为对环境应激源具有抗性且具有可编程功能的单寿命装置。我们将修饰后的细菌指定为半机械人细菌细胞。该方案扩展了合成生物学工具集,赋予对活细胞的精确控制,并为生物技术、生物医学工程和活疗法创建了一个多功能的细胞底盘。该方案,包括凝胶化试剂和底盘菌株的制备,可以在4天内完成。该方案的实施需要微生物技术、水凝胶化学、荧光显微镜和流式细胞术方面的专业知识。半机械人细菌细胞的进一步功能化和该方案的调整需要从合成基因电路工程到水凝胶聚合化学等一系列技能。