Suppr超能文献

使用U - DenseLens(DenseLens + 分割)在千度巡天中自动寻找强引力透镜。

Automation of finding strong gravitational lenses in the Kilo Degree Survey with U - DenseLens (DenseLens  + Segmentation).

作者信息

N Bharath Chowdhary, Koopmans Léon V E, Valentijn Edwin A, Kleijn Gijs Verdoes, de Jong Jelte T A, Napolitano Nicola, Li Rui, Tortora Crescenzo, Busillo Valerio, Dong Yue

机构信息

Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands.

Department of Physics "E. Pancini", University of Naples, Federico II, Via Cintia, 21, 80126 Naples, Italy.

出版信息

Mon Not R Astron Soc. 2024 Aug 6;533(2):1426-1441. doi: 10.1093/mnras/stae1882. eCollection 2024 Sep.

Abstract

In the context of upcoming large-scale surveys like Euclid, the necessity for the automation of strong lens detection is essential. While existing machine learning pipelines heavily rely on the classification probability (P), this study intends to address the importance of integrating additional metrics, such as Information Content (IC) and the number of pixels above the segmentation threshold ([Formula: see text]), to alleviate the false positive rate in unbalanced data-sets. In this work, we introduce a segmentation algorithm (U-Net) as a supplementary step in the established strong gravitational lens identification pipeline (Denselens), which primarily utilizes [Formula: see text] and [Formula: see text] parameters for the detection and ranking. The results demonstrate that the inclusion of segmentation enables significant reduction of false positives by approximately 25 per cent in the final sample extracted from DenseLens, without compromising the identification of strong lenses. The main objective of this study is to automate the strong lens detection process by integrating these three metrics. To achieve this, a decision tree-based selection process is introduced, applied to the Kilo Degree Survey (KiDS) data. This process involves rank-ordering based on classification scores ([Formula: see text]), filtering based on Information Content ([Formula: see text]), and segmentation score ([Formula: see text]). Additionally, the study presents 14 newly discovered strong lensing candidates identified by the U-Denselens network using the KiDS DR4 data.

摘要

在即将开展的像欧几里得这样的大规模巡天背景下,强引力透镜检测自动化的必要性至关重要。虽然现有的机器学习流程严重依赖分类概率(P),但本研究旨在强调整合其他指标的重要性,如信息含量(IC)和高于分割阈值的像素数量([公式:见原文]),以降低不平衡数据集中的误报率。在这项工作中,我们引入一种分割算法(U-Net)作为既定的强引力透镜识别流程(Denselens)中的一个补充步骤,该流程主要利用[公式:见原文]和[公式:见原文]参数进行检测和排序。结果表明,纳入分割步骤能够在从DenseLens提取的最终样本中显著减少约25%的误报,同时不影响强引力透镜的识别。本研究的主要目标是通过整合这三个指标实现强引力透镜检测过程的自动化。为实现这一目标,引入了一种基于决策树的选择过程,并应用于千度巡天(KiDS)数据。这个过程包括基于分类分数([公式:见原文])进行排序、基于信息含量([公式:见原文])和分割分数([公式:见原文])进行筛选。此外,该研究展示了使用KiDS DR4数据由U-Denselens网络识别出的14个新发现的强引力透镜候选体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5426/11338276/d6b8a28d5346/stae1882fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验