Suppr超能文献

根际中的植物-微生物相互作用助力更智能、更可持续的作物施肥:以基于植物促生根际细菌的生物肥料为例

Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers.

作者信息

Alzate Zuluaga Monica Yorlady, Fattorini Roberto, Cesco Stefano, Pii Youry

机构信息

Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano, Bolzano, Italy.

出版信息

Front Microbiol. 2024 Aug 8;15:1440978. doi: 10.3389/fmicb.2024.1440978. eCollection 2024.

Abstract

Biofertilizers based on plant growth promoting rhizobacteria (PGPR) are nowadays gaining increasingly attention as a modern tool for a more sustainable agriculture due to their ability in ameliorating root nutrient acquisition. For many years, most research was focused on the screening and characterization of PGPR functioning as nitrogen (N) or phosphorus (P) biofertilizers. However, with the increasing demand for food using far fewer chemical inputs, new investigations have been carried out to explore the potential use of such bacteria also as potassium (K), sulfur (S), zinc (Zn), or iron (Fe) biofertilizers. In this review, we update the use of PGPR as biofertilizers for a smarter and more sustainable crop production and deliberate the prospects of using microbiome engineering-based methods as potential tools to shed new light on the improvement of plant mineral nutrition. The current era of omics revolution has enabled the design of synthetic microbial communities (named ), which are emerging as a promising tool that can allow the formulation of biofertilizers based on PGPR strains displaying multifarious and synergistic traits, thus leading to an increasingly efficient root acquisition of more than a single essential nutrient at the same time. Additionally, host-mediated microbiome engineering (HMME) leverages advanced omics techniques to reintroduce alleles coding for beneficial compounds, reinforcing positive plant-microbiome interactions and creating plants capable of producing their own biofertilizers. We also discusses the current use of PGPR-based biofertilizers and point out possible avenues of research for the future development of more efficient biofertilizers for a smarter and more precise crop fertilization. Furthermore, concerns have been raised about the effectiveness of PGPR-based biofertilizers in real field conditions, as their success in controlled experiments often contrasts with inconsistent field results. This discrepancy highlights the need for standardized protocols to ensure consistent application and reliable outcomes.

摘要

基于植物根际促生细菌(PGPR)的生物肥料,如今作为一种实现更可持续农业的现代工具,正日益受到关注,因为它们能够改善根系对养分的获取。多年来,大多数研究都集中在筛选和表征作为氮(N)或磷(P)生物肥料发挥作用的PGPR。然而,随着对减少化学投入的食品需求不断增加,人们开展了新的研究,以探索此类细菌作为钾(K)、硫(S)、锌(Zn)或铁(Fe)生物肥料的潜在用途。在本综述中,我们更新了PGPR作为生物肥料用于更智能、更可持续作物生产的应用情况,并探讨了使用基于微生物组工程的方法作为潜在工具,为改善植物矿物质营养带来新启示的前景。当前的组学革命时代使得合成微生物群落(称为 )的设计成为可能,合成微生物群落正成为一种有前途的工具,能够基于具有多种协同性状的PGPR菌株配制生物肥料,从而使根系同时获取多种必需养分的效率越来越高。此外,宿主介导的微生物组工程(HMME)利用先进的组学技术重新引入编码有益化合物的等位基因,加强植物与微生物组之间的积极相互作用,并培育出能够自行生产生物肥料的植物。我们还讨论了基于PGPR的生物肥料的当前应用,并指出了未来开发更高效生物肥料以实现更智能、更精确作物施肥的可能研究途径。此外,人们对基于PGPR的生物肥料在实际田间条件下的有效性提出了担忧,因为它们在对照实验中的成功往往与不一致的田间结果形成对比。这种差异凸显了需要标准化方案来确保一致的应用和可靠的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4429/11338843/1b05d8f3ca62/fmicb-15-1440978-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验