Suppr超能文献

增强医疗信息学:将范畴论推理整合到 OMOP-CDM 本体模型中。

Enhancing Healthcare Informatics: Integrating Category Theory Reasoning into OMOP-CDM Ontology Model.

机构信息

Université Sorbonne Paris Nord, LIMICS, Sorbonne Université, INSERM, UMR 1142, F-93000, Bobigny, France.

出版信息

Stud Health Technol Inform. 2024 Aug 22;316:1427-1431. doi: 10.3233/SHTI240680.

Abstract

The task of managing diverse electronic health records requires the consolidation of data from different sources to facilitate clinical research and decision-making support, with the emergence of the Observational Medical Outcomes Partnership - Common Data Model (OMOP-CDM) as a standard relational database schema for structuring health records from different sources. Working with ontologies is strongly associated with reasoners. Implementing them over expansive and intricate Ontologies can pose computational challenges, potentially resulting in slow performance. In this paper, we propose the implementation of a new reasoner based on categorical logic over a translation of OMOP-CDM into an ontology model. This enables enhancements to the efficiency and scalability of implementing such models.

摘要

管理多样化的电子健康记录需要整合来自不同来源的数据,以促进临床研究和决策支持,而观察性医学结局伙伴关系-通用数据模型(OMOP-CDM)的出现则为来自不同来源的健康记录构建标准关系数据库模式。与推理机配合使用与本体密切相关。在广泛而复杂的本体上实现它们可能会带来计算上的挑战,从而导致性能缓慢。在本文中,我们提出了在基于范畴逻辑的新推理机上实现的方案,该推理机基于将 OMOP-CDM 转换为本体模型。这可以提高实现此类模型的效率和可扩展性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验