Suppr超能文献

OMOP CDM 有助于癌症预测的数据分析研究:系统综述。

OMOP CDM Can Facilitate Data-Driven Studies for Cancer Prediction: A Systematic Review.

机构信息

Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany.

出版信息

Int J Mol Sci. 2022 Oct 5;23(19):11834. doi: 10.3390/ijms231911834.

Abstract

The current generation of sequencing technologies has led to significant advances in identifying novel disease-associated mutations and generated large amounts of data in a high-throughput manner. Such data in conjunction with clinical routine data are proven to be highly useful in deriving population-level and patient-level predictions, especially in the field of cancer precision medicine. However, data harmonization across multiple national and international clinical sites is an essential step for the assessment of events and outcomes associated with patients, which is currently not adequately addressed. The Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) is an internationally established research data repository introduced by the Observational Health Data Science and Informatics (OHDSI) community to overcome this issue. To address the needs of cancer research, the genomic vocabulary extension was introduced in 2020 to support the standardization of subsequent data analysis. In this review, we evaluate the current potential of the OMOP CDM to be applicable in cancer prediction and how comprehensively the genomic vocabulary extension of the OMOP can serve current needs of AI-based predictions. For this, we systematically screened the literature for articles that use the OMOP CDM in predictive analyses in cancer and investigated the underlying predictive models/tools. Interestingly, we found 248 articles, of which most use the OMOP for harmonizing their data, but only 5 make use of predictive algorithms on OMOP-based data and fulfill our criteria. The studies present multicentric investigations, in which the OMOP played an essential role in discovering and optimizing machine learning (ML)-based models. Ultimately, the use of the OMOP CDM leads to standardized data-driven studies for multiple clinical sites and enables a more solid basis utilizing, e.g., ML models that can be reused and combined in early prediction, diagnosis, and improvement of personalized cancer care and biomarker discovery.

摘要

当前一代的测序技术在识别新的疾病相关突变方面取得了重大进展,并以高通量的方式生成了大量数据。这些数据与临床常规数据相结合,被证明在得出人群水平和患者水平的预测方面非常有用,特别是在癌症精准医学领域。然而,跨多个国家和国际临床站点的数据协调是评估与患者相关的事件和结果的重要步骤,目前尚未得到充分解决。观察性医学结局伙伴关系(OMOP)通用数据模型(CDM)是由观察性健康数据科学和信息学(OHDSI)社区引入的国际上已建立的研究数据存储库,旨在解决这个问题。为了满足癌症研究的需求,2020 年引入了基因组词汇扩展,以支持后续数据分析的标准化。在这篇综述中,我们评估了 OMOP CDM 在癌症预测中的当前应用潜力,以及 OMOP 的基因组词汇扩展如何全面满足当前基于人工智能的预测的需求。为此,我们系统地筛选了文献中使用 OMOP CDM 进行癌症预测分析的文章,并调查了潜在的预测模型/工具。有趣的是,我们发现了 248 篇文章,其中大多数使用 OMOP 来协调他们的数据,但只有 5 篇文章在基于 OMOP 的数据上使用预测算法并符合我们的标准。这些研究呈现了多中心的调查,其中 OMOP 在发现和优化基于机器学习(ML)的模型方面发挥了重要作用。最终,使用 OMOP CDM 可以为多个临床站点提供标准化的数据驱动研究,并利用例如可以重复使用和组合的 ML 模型,为早期预测、诊断以及改善个性化癌症护理和生物标志物发现提供更坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b822/9569469/14a5f009776f/ijms-23-11834-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验