Suppr超能文献

代谢组学揭示帕金森病中的紊乱途径:迈向基于生物标志物的诊断。

Metabolomics Unveils Disrupted Pathways in Parkinson's Disease: Toward Biomarker-Based Diagnosis.

机构信息

Department of Pharmaceutical Sciences, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil.

Chemistry Institute, Federal University of Alfenas, Alfenas 37130-001, Brazil.

出版信息

ACS Chem Neurosci. 2024 Sep 4;15(17):3168-3180. doi: 10.1021/acschemneuro.4c00355. Epub 2024 Aug 23.

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder characterized by diverse symptoms, where accurate diagnosis remains challenging. Traditional clinical observation methods often result in misdiagnosis, highlighting the need for biomarker-based diagnostic approaches. This study utilizes ultraperformance liquid chromatography coupled to an electrospray ionization source and quadrupole time-of-flight untargeted metabolomics combined with biochemometrics to identify novel serum biomarkers for PD. Analyzing a Brazilian cohort of serum samples from 39 PD patients and 15 healthy controls, we identified 15 metabolites significantly associated with PD, with 11 reported as potential biomarkers for the first time. Key disrupted metabolic pathways include caffeine metabolism, arachidonic acid metabolism, and primary bile acid biosynthesis. Our machine learning model demonstrated high accuracy, with the Rotation Forest boosting model achieving 94.1% accuracy in distinguishing PD patients from controls. It is based on three new PD biomarkers (downregulated: 1-lyso-2-arachidonoyl-phosphatidate and hypoxanthine and upregulated: ferulic acid) and surpasses the general 80% diagnostic accuracy obtained from initial clinical evaluations conducted by specialists. Besides, this machine learning model based on a decision tree allowed for visual and easy interpretability of affected metabolites in PD patients. These findings could improve the detection and monitoring of PD, paving the way for more precise diagnostics and therapeutic interventions. Our research emphasizes the critical role of metabolomics and machine learning in advancing our understanding of the chemical profile of neurodegenerative diseases.

摘要

帕金森病(PD)是一种神经退行性疾病,其特征是症状多样,目前仍难以准确诊断。传统的临床观察方法常常导致误诊,这凸显了基于生物标志物的诊断方法的必要性。本研究利用超高效液相色谱与电喷雾源和四极杆飞行时间非靶向代谢组学相结合,并结合生物化学计量学,旨在确定用于 PD 的新型血清生物标志物。通过分析来自 39 名 PD 患者和 15 名健康对照者的巴西血清样本队列,我们确定了 15 种与 PD 显著相关的代谢物,其中 11 种为首次报道的潜在生物标志物。关键的代谢途径包括咖啡因代谢、花生四烯酸代谢和初级胆汁酸生物合成。我们的机器学习模型显示出较高的准确性,旋转森林提升模型在区分 PD 患者和对照组方面的准确率达到 94.1%。该模型基于三个新的 PD 生物标志物(下调:1-溶血磷脂酰基-2-花生四烯酸和次黄嘌呤;上调:阿魏酸),超过了专家进行的初步临床评估获得的 80%的一般诊断准确率。此外,该基于决策树的机器学习模型允许对 PD 患者受影响的代谢物进行可视化和易于解释。这些发现可以改善 PD 的检测和监测,为更精确的诊断和治疗干预铺平道路。我们的研究强调了代谢组学和机器学习在深入了解神经退行性疾病的化学特征方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4354/11378289/3aad89b212ed/cn4c00355_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验