Karout Lina, Kalra Mannudeep K
Massachusetts General Hospital, Boston, MA, USA.
Faculty of Applied Medical, Jordan University of Science and Technology, Irbid, Jordan.
Eur Radiol. 2025 Apr;35(4):1915-1932. doi: 10.1007/s00330-024-11017-7. Epub 2024 Aug 24.
To assess the relationship between intravenous iodinated contrast media (ICM) administration usage and radiation doses for contrast-enhanced (CE) CT of head, chest, and abdomen-pelvis (AP) in international, multicenter settings.
Our international (n = 16 countries), multicenter (n = 43 sites), and cross-sectional (ConRad) study had two parts. Part 1: Redcap survey with questions on information related to CT and ICM manufacturer/brand and respective protocols. Part 2: Information on 3,258 patients (18-96 years; M:F 1654:1604) who underwent CECT for a routine head (n = 456), chest (n = 528), AP (n = 599), head CT angiography (n = 539), pulmonary embolism (n = 599), and liver CT examinations (n = 537) at 43 sites across five continents. The following information was recorded: hospital name, patient age, gender, body mass index [BMI], clinical indications, scan parameters (number of scan phases, kV), IV-contrast information (concentration, volume, flow rate, and delay), and dose indices (CTDIvol and DLP).
Most routine chest (58.4%) and AP (68.7%) CECT exams were performed with 2-4 scan phases with fixed scan delay (chest 71.4%; AP 79.8%, liver CECT 50.7%) following ICM administration. Most sites did not change kV across different patients and scan phases; most CECT protocols were performed at 120-140 kV (83%, 1979/2685). There were no significant differences between radiation doses for non-contrast (CTDIvol 24 [16-30] mGy; DLP 633 [414-702] mGy·cm) and post-contrast phases (22 [19-27] mGy; 648 [392-694] mGy·cm) (p = 0.142). Sites that used bolus tracking for chest and AP CECT had lower CTDIvol than sites with fixed scan delays (p < 0.001). There was no correlation between BMI and CTDIvol (r ≤ - 0.1 to 0.1, p = 0.931).
Our study demonstrates up to ten-fold variability in ICM injection protocols and radiation doses across different CT protocols. The study emphasizes the need for optimizing CT scanning and contrast protocols to reduce unnecessary contrast and radiation exposure to patients.
The wide variability and lack of standardization of ICM media and radiation doses in CT protocols suggest the need for education and optimization of contrast usage and scan factors for optimizing image quality in CECT.
There is a lack of patient-centric CT protocol optimization taking into consideration mainly patients' size. There is a lack of correlation between ICM volume and CT radiation dose across CT protocol. A ten-fold variation in iodine-load for the same CT protocol in sites suggests a lack of standardization.
评估在国际多中心环境下,静脉注射碘化造影剂(ICM)的使用与头部、胸部及腹部-盆腔(AP)增强CT(CECT)辐射剂量之间的关系。
我们的国际(n = 16个国家)、多中心(n = 43个机构)横断面(ConRad)研究分为两个部分。第1部分:采用Redcap调查问卷,询问有关CT及ICM制造商/品牌以及各自方案的相关信息。第2部分:收集了3258例患者(年龄18 - 96岁;男:女为1654:1604)的信息,这些患者在五大洲的43个机构接受了常规头部(n = 456)、胸部(n = 528)、AP(n = 599)、头部CT血管造影(n = 539)、肺栓塞(n = 599)及肝脏CT检查(n = 537)。记录了以下信息:医院名称、患者年龄、性别、体重指数[BMI]、临床指征、扫描参数(扫描期相数、kV)、静脉造影信息(浓度、体积、流速及延迟时间)以及剂量指标(CTDIvol和DLP)。
大多数常规胸部(58.4%)和AP(68.7%)CECT检查在注射ICM后采用2 - 4个扫描期相且扫描延迟固定(胸部71.4%;AP 79.8%,肝脏CECT 50.7%)。大多数机构在不同患者和扫描期相之间未改变kV;大多数CECT方案在120 - 140 kV下进行(83%,1979/2685)。非增强期(CTDIvol 24 [16 - 30] mGy;DLP 633 [414 - 702] mGy·cm)和增强期(22 [19 - 27] mGy;648 [392 - 694] mGy·cm)的辐射剂量之间无显著差异(p = 0.142)。对胸部和AP CECT采用团注追踪的机构其CTDIvol低于采用固定扫描延迟的机构(p < 0.001)。BMI与CTDIvol之间无相关性(r ≤ - 0.1至0.1,p = 0.931)。
我们的研究表明,不同CT方案中ICM注射方案和辐射剂量存在高达10倍的差异。该研究强调需要优化CT扫描和造影方案,以减少对患者不必要的造影剂和辐射暴露。
CT方案中ICM介质和辐射剂量的广泛差异及缺乏标准化表明,需要进行教育并优化造影剂使用和扫描因素,以优化CECT的图像质量。
缺乏以患者为中心的CT方案优化,主要未考虑患者体型。不同CT方案中ICM体积与CT辐射剂量之间缺乏相关性。各机构相同CT方案的碘负荷存在10倍差异,表明缺乏标准化。