Başkent University Faculty of Medicine, Department of Radiology, Ankara, Türkiye
Diagn Interv Radiol. 2024 May 13;30(3):205-211. doi: 10.4274/dir.2023.232265. Epub 2023 Aug 31.
The purpose of this study is to establish local diagnostic reference levels (LDRLs) for computed tomography (CT) procedures using cloud-based automated dose-tracking software.
The study includes the dose data obtained from a total of 104,272 examinations performed on adult patients (>18 years) using 8 CT scanners over 12 months. The protocols included in our study were as follows: head CT without contrast, cervical spine CT without contrast, neck CT with contrast, chest CT without contrast, abdomen-pelvis CT without contrast, lumbar spine CT without contrast, high-resolution computed tomography (HRCT) of the chest, and coronary CT angiography (CTA). Dose data were collected using cloud-based automatic dose-tracking software. The 75 percentiles of the distributions of the median volume CT dose index (CTDIvol) and dose length product (DLP) values were used to determine the LDRLs for each protocol. The LDRLs were compared with national DRLs (NDRLs) and DRLs set in other countries. Inter-CT scanner variability, which is a measure of how well clinical practices are standardized, was determined for each protocol. Median values for each protocol were compared with the LDRLs for dose optimization in each CT scanner.
The LDRLs (for DLP and CTDIvol, respectively) were 839 mGy.cm and 41.2 mGy for head CT without contrast, 530.6 mGy.cm and 19.8 mGy for cervical spine CT without contrast, 431.9 mGy.cm and 15.5 mGy for neck CT with contrast, 364.8 mGy.cm and 9.3 mGy for chest CT without contrast, 588.9 mGy. cm and 11.2 mGy for abdomen-pelvis CT without contrast, 713 mGy.cm and 24.3 mGy for lumbar spine CT without contrast, 326 mGy.cm and 9.5 mGy for HRCT, and 642.3 mGy.cm and 33.4 mGy for coronary CTA. The LDRLs were comparable to or lower than NDRLs and DRLs set in other countries for most protocols. The comparisons revealed the need for immediate initiation of an optimization process for CT protocols with higher dose distributions. Furthermore, protocols with high inter-CT scanner variability revealed the need for standardization.
There is a need to update the NDRLs for CT protocols in Turkey. Until new NDRLs are established, local institutions in Turkey can initiate the optimization process by comparing their dose distributions to the LDRLs established in our study. Automated dose-tracking software can play an important role in establishing DRLs by facilitating the collection and analysis of large datasets.
本研究旨在使用基于云的自动剂量跟踪软件为计算机断层扫描(CT)程序建立局部诊断参考水平(LDRL)。
该研究包括在 12 个月内使用 8 台 CT 扫描仪对 104,272 名成年患者(>18 岁)进行的总共 104,272 次检查的剂量数据。我们的研究方案如下:头部 CT 平扫、颈椎 CT 平扫、颈部 CT 增强、胸部 CT 平扫、腹部-盆腔 CT 平扫、腰椎 CT 平扫、胸部高分辨率 CT(HRCT)和冠状动脉 CT 血管造影(CTA)。使用基于云的自动剂量跟踪软件收集剂量数据。使用中位数体积 CT 剂量指数(CTDIvol)和剂量长度乘积(DLP)分布的第 75 百分位数来确定每个方案的 LDRL。将 LDRL 与国家诊断参考水平(NDRL)和其他国家设定的诊断参考水平进行比较。确定了每个方案的 CT 扫描仪间变异性,这是衡量临床实践标准化程度的指标。比较了每个方案的中位数与每个 CT 扫描仪的剂量优化的 LDRL。
LDRL(分别为 DLP 和 CTDIvol)分别为头部 CT 平扫的 839 mGy.cm 和 41.2 mGy、颈椎 CT 平扫的 530.6 mGy.cm 和 19.8 mGy、颈部 CT 增强的 431.9 mGy.cm 和 15.5 mGy、胸部 CT 平扫的 364.8 mGy.cm 和 9.3 mGy、腹部-盆腔 CT 平扫的 588.9 mGy. cm 和 11.2 mGy、腰椎 CT 平扫的 713 mGy.cm 和 24.3 mGy、HRCT 的 326 mGy.cm 和 9.5 mGy,以及冠状动脉 CTA 的 642.3 mGy.cm 和 33.4 mGy。对于大多数方案,LDRL 与 NDRL 或其他国家设定的 DRL 相当或更低。比较表明,需要立即开始对剂量分布较高的 CT 方案进行优化。此外,具有高 CT 扫描仪间变异性的方案需要标准化。
有必要更新土耳其 CT 方案的 NDRL。在建立新的 NDRL 之前,土耳其的本地机构可以通过将其剂量分布与我们研究中建立的 LDRL 进行比较来启动优化过程。自动剂量跟踪软件可以通过促进大型数据集的收集和分析,在建立 DRL 方面发挥重要作用。