State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-Sen University, Guangzhou, China.
Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
J Neuroinflammation. 2024 Aug 24;21(1):210. doi: 10.1186/s12974-024-03190-9.
Ischemic retinopathies including diabetic retinopathy are major causes of vision loss. Inner blood-retinal barrier (BRB) breakdown with retinal vascular hyperpermeability results in macular edema. Although dysfunction of the neurovascular unit including neurons, glia, and vascular cells is now understood to underlie this process, there is a need for fuller elucidation of the underlying events in BRB dysfunction in ischemic disease, including a systematic analysis of myeloid cells and exploration of cellular cross-talk. We used an approach for microglia depletion with the CSF-1R inhibitor PLX5622 (PLX) in the retinal ischemia-reperfusion (IR) model. Under non-IR conditions, PLX treatment successfully depleted microglia in the retina. PLX suppressed the microglial activation response following IR as well as infiltration of monocyte-derived macrophages. This occurred in association with reduction of retinal expression of chemokines including CCL2 and the inflammatory adhesion molecule ICAM-1. In addition, there was a marked suppression of retinal neuroinflammation with reduction in expression of IL-1b, IL-6, Ptgs2, TNF-a, and Angpt2, a protein that regulates BRB permeability. PLX treatment significantly suppressed inner BRB breakdown following IR, without an appreciable effect on neuronal dysfunction. A translatomic analysis of Müller glial-specific gene expression in vivo using the Ribotag approach demonstrated a strong suppression of Müller cell expression of multiple pro-inflammatory genes following PLX treatment. Co-culture studies of Müller cells and microglia demonstrated that activated microglia directly upregulates Müller cell-expression of these inflammatory genes, indicating Müller cells as a downstream effector of myeloid cells in retinal IR. Co-culture studies of these two cell types with endothelial cells demonstrated the ability of both activated microglia and Müller cells to compromise EC barrier function. Interestingly, quiescent Müller cells enhanced EC barrier function in this co-culture system. Together this demonstrates a pivotal role for myeloid cells in inner BRB breakdown in the setting of ischemia-associated disease and indicates that myeloid cells play a major role in iBRB dysregulation, through direct and indirect effects, while Müller glia participate in amplifying the neuroinflammatory effect of myeloid cells.
缺血性视网膜病变包括糖尿病视网膜病变是视力丧失的主要原因。内血视网膜屏障 (BRB) 破裂伴视网膜血管通透性增加导致黄斑水肿。虽然现在已经了解到神经元、神经胶质和血管细胞的神经血管单元功能障碍是导致这种情况的原因,但仍需要更充分地阐明缺血性疾病中 BRB 功能障碍的潜在事件,包括对髓样细胞进行系统分析和探索细胞串扰。我们使用 CSF-1R 抑制剂 PLX5622 (PLX) 对视网膜缺血再灌注 (IR) 模型中的小胶质细胞进行耗竭的方法。在非 IR 条件下,PLX 治疗成功耗尽了视网膜中的小胶质细胞。PLX 抑制了 IR 后小胶质细胞的激活反应以及单核细胞衍生巨噬细胞的浸润。这与包括 CCL2 和炎症性粘附分子 ICAM-1 在内的趋化因子的视网膜表达减少有关。此外,IL-1b、IL-6、Ptgs2、TNF-a 和调节 BRB 通透性的 Angpt2 等炎症蛋白的表达也明显抑制了视网膜神经炎症。PLX 治疗显著抑制了 IR 后的内 BRB 破裂,而对神经元功能障碍没有明显影响。使用 Ribotag 方法对体内 Müller 胶质细胞特异性基因表达进行的转译分析表明,PLX 治疗后 Müller 细胞表达的多种促炎基因受到强烈抑制。Müller 细胞和小胶质细胞的共培养研究表明,激活的小胶质细胞直接上调 Müller 细胞中这些炎症基因的表达,表明 Müller 细胞是视网膜 IR 中髓样细胞的下游效应物。这两种细胞类型与内皮细胞的共培养研究表明,激活的小胶质细胞和 Müller 细胞都能够破坏 EC 屏障功能。有趣的是,静止的 Müller 细胞增强了该共培养系统中的 EC 屏障功能。综上所述,髓样细胞在缺血相关疾病中在 BRB 内破坏中起关键作用,并表明髓样细胞通过直接和间接作用在 iBRB 失调中起主要作用,而 Müller 胶质细胞参与放大髓样细胞的神经炎症效应。