Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Québec, Canada.
Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Québec, Canada.
Acta Biomater. 2024 Oct 15;188:374-392. doi: 10.1016/j.actbio.2024.08.030. Epub 2024 Sep 5.
Bioactive glasses (BGs) bond with bone by forming hydroxy carbonate apatite (HCA) upon reaction in physiological fluid, a phenomenon known as bioactivity. BGs structural network connectivity determines their bioactivity. Sol-gel BGs are synthesized through the hydrolysis and condensation of metal alkoxide precursors in the presence of a catalyst, in aqueous environments. Several sol-gel synthesis parameters directly impact BG network connectivity: pH (i.e. acid or basic catalysis), water to alkoxide ratio (R), alkoxide type and presence of dopant ions. However, the relationship between bioactivity and these parameters remains surprisingly unexplored. This study highlights the relationship between synthesis pH, R, network connectivity and bioactivity in silica-based sol-gel BGs and BGs doped with titanium (Ti) ions (TiBGs), the latter selected for their known ability to enhance network connectivity. BGs and TiBGs are synthesized with various R values under acidic and basic conditions, and their bioactivity is assessed in simulated body fluid for 7 days. Increasing R decreases network connectivity and increases bioactivity of BGs with high network connectivity, as observed for base-catalyzed BGs and for both acid and base catalyzed TiBGs, but not in BGs with lower connectivity as evidenced in acid-catalyzed BGs. Basic catalysis of TiBGs prevents crystalline TiO domain formation, which was instead consistently observed in TiBGs synthesized under acidic catalysis. These findings help the design of BGs for applications where ion release needs to be enhanced even in the presence of dopants that slow down HCA formation, and of BGs with specific properties, e.g. TiO-containing BGs with potential bactericidal activity. STATEMENT OF SIGNIFICANCE: Bioactive glasses (BGs) bond with bone by dissolving and forming hydroxycarbonate apatite (HCA) on their surface, offering applications in medicine and dentistry. BG's network connectivity influences its dissolution rate, and hence HCA formation. While solution-gelation (sol-gel) is commonly used for BG production, the effect of sol gel synthesis parameters on HCA formation remains unexplored. We studied the relationship between synthesis parameters (water-to-alkoxide ratio (R), catalyst, and dopant ions, particularly titanium), BG network connectivity, and HCA formation. We find that increasing R with any catalyst enhances HCA formation, particularly in glasses with high network connectivity. This understanding allows tailoring BG synthesis for different applications, e.g. those requiring doping with ions that increase network connectivity and fills a crucial gap in BG literature.
生物活性玻璃(BGs)在生理液中通过形成羟基碳酸盐磷灰石(HCA)与骨骼结合,这一现象称为生物活性。BGs 的结构网络连通性决定了其生物活性。溶胶-凝胶 BGs 是通过在催化剂存在下,在水相环境中水解和缩合金属醇盐前体制备的。几个溶胶-凝胶合成参数直接影响 BG 网络连通性:pH(即酸或碱性催化)、水与醇盐的比例(R)、醇盐类型和掺杂离子的存在。然而,生物活性与这些参数之间的关系仍然令人惊讶地没有得到探索。本研究强调了合成 pH、R、网络连通性和硅基溶胶-凝胶 BGs 及掺杂钛(Ti)离子的 BGs(TiBGs)的生物活性之间的关系,后者因其已知能增强网络连通性而被选择。在酸性和碱性条件下,用不同的 R 值合成 BGs 和 TiBGs,并在模拟体液中评估它们 7 天的生物活性。研究发现,随着 R 的增加,BGs 的网络连通性降低,高网络连通性的 BGs 的生物活性增加,这在碱性催化的 BGs 以及酸和碱性催化的 TiBGs 中均得到了观察,但在酸性催化的 BGs 中则没有观察到低连通性的 BGs 有类似的情况。TiBGs 的碱性催化阻止了 TiO 晶区的形成,而在酸性催化合成的 TiBGs 中则始终观察到 TiO 晶区的形成。这些发现有助于设计 BGs,使其在存在减缓 HCA 形成的掺杂剂的情况下,仍能增强离子释放,以及具有特定性能的 BGs,例如具有潜在杀菌活性的含 TiO 的 BGs。
生物活性玻璃(BGs)通过溶解并在其表面形成羟基碳酸磷灰石(HCA)与骨骼结合,在医学和牙科领域有应用。BG 的网络连通性影响其溶解速率,进而影响 HCA 的形成。溶胶-凝胶法(溶胶-凝胶法)常用于 BG 的生产,但溶胶-凝胶合成参数对 HCA 形成的影响仍未得到探索。我们研究了合成参数(水-醇盐比(R)、催化剂和掺杂离子,特别是钛)、BG 网络连通性和 HCA 形成之间的关系。我们发现,使用任何催化剂增加 R 都可以增强 HCA 的形成,尤其是在具有高网络连通性的玻璃中。这种理解允许根据不同的应用定制 BG 的合成,例如那些需要掺杂以增加网络连通性的应用,填补了 BG 文献中的一个关键空白。