Lennholm M, Aleiferis S, Bakes S, Bardsley O P, van Berkel M, Casson F J, Chaudry F, Conway N J, Hender T C, Henderson S S, Kool B, Lafferty M, Meyer H F, Mitchell J, Mitra A, Osawa R, Otin R, Parrot A, Thompson T, Xia G
United United Kingdom Atomic Energy Authority, Culham Campus , Abingdon, Oxon OX14 3DB, UK.
DIFFER-Dutch Institute for Fundamental Energy Research, De Zaale 20 , Eindhoven 5612, Netherlands.
Philos Trans A Math Phys Eng Sci. 2024 Oct 9;382(2280):20230403. doi: 10.1098/rsta.2023.0403. Epub 2024 Aug 26.
Success of the UK's Spherical Tokamak for Energy Production (STEP) programme requires a robust plasma control system. This system has to guide the plasma from initiation to the burning phase, maintain it there, produce the desired fusion power for the desired duration and then terminate the plasma safely. This has to be done in a challenging environment with limited sensors and without overloading plasma-facing components. The plasma parameters and the operational regime in the STEP prototype will be very different from tokamaks, which are presently in operation. During fusion burn, the plasma regime in STEP will be self-organizing, adding further complications to the plasma control system design. This article describes the work to date on the design of individual controllers for plasma shape and position, magneto hydrodynamic instabilities, heat load and fusion power. Having studied 'normal' operation, the article discusses the philosophy of how the system will handle exceptions, when things do not go exactly as planned. This article is part of the theme issue 'Delivering Fusion Energy - The Spherical Tokamak for Energy Production (STEP)'.
英国用于能源生产的球形托卡马克(STEP)项目的成功需要一个强大的等离子体控制系统。该系统必须引导等离子体从启动到燃烧阶段,维持在此阶段,在所需持续时间内产生所需的聚变功率,然后安全地终止等离子体。这必须在传感器有限且不使面向等离子体的部件过载的具有挑战性的环境中完成。STEP原型中的等离子体参数和运行模式将与目前运行的托卡马克有很大不同。在聚变燃烧期间,STEP中的等离子体状态将是自组织的,这给等离子体控制系统设计增加了更多复杂性。本文描述了迄今为止在等离子体形状和位置、磁流体动力学不稳定性、热负荷和聚变功率的单个控制器设计方面的工作。在研究了“正常”运行之后,本文讨论了系统在事情未完全按计划进行时如何处理异常情况的理念。本文是主题为“实现聚变能源——用于能源生产的球形托卡马克(STEP)”的特刊的一部分。