Suppr超能文献

探索环境空气污染与新冠病毒疾病风险之间的关联:一项采用元回归建模的综合荟萃分析。

Exploring the association between ambient air pollution and COVID-19 risk: A comprehensive meta-analysis with meta-regression modelling.

作者信息

Musonye Harry Asena, He Yi-Sheng, Bekele Merga Bayou, Jiang Ling-Qiong, Xu Yi-Qing, Gao Zhao-Xing, Ge Man, He Tian, Zhang Peng, Zhao Chan-Na, Chen Cong, Wang Peng, Pan Hai-Feng

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.

Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Hospital of Anhui Medical University 678 Furong Road, Hefei, 230601, Anhui, China.

出版信息

Heliyon. 2024 Jun 6;10(12):e32385. doi: 10.1016/j.heliyon.2024.e32385. eCollection 2024 Jun 30.

Abstract

INTRODUCTION

Air pollution is speculated to increase the risk of Coronavirus disease-2019 (COVID-19). Nevertheless, the results remain inconsistent and inconclusive. This study aimed to explore the association between ambient air pollution (AAP) and COVID-19 risks using a meta-analysis with meta-regression modelling.

METHODS

The inclusion criteria were: original studies quantifying the association using effect sizes and 95 % confidence intervals (CIs); time-series, cohort, ecological or case-crossover peer-reviewed studies in English. Exclusion criteria encompassed non-original studies, animal studies, and data with common errors. PubMed, Web of Science, Embase and Google Scholar electronic databases were systemically searched for eligible literature, up to 31, March 2023. The risk of bias (ROB) was assessed following the Agency for Healthcare Research and Quality parameters. A random-effects model was used to calculate pooled risk ratios (RRs) and their 95 % CIs.

RESULTS

A total of 58 studies, between 2020 and 2023, met the inclusion criteria. The global representation was skewed, with major contributions from the USA (24.1 %) and China (22.4 %). The distribution included studies on short-term (43.1 %) and long-term (56.9 %) air pollution exposure. Ecological studies constituted 51.7 %, time-series-27.6 %, cohorts-17.2 %, and case crossover-3.4 %. ROB assessment showed low (86.2 %) and moderate (13.8 %) risk. The COVID-19 incidences increased with a 10 μg/m increase in PM [RR = 4.9045; 95 % CI (4.1548-5.7895)], PM [RR = 2.9427: (2.2290-3.8850)], NO [RR = 3.2750: (3.1420-3.4136)], SO [RR = 3.3400: (2.7931-3.9940)], CO [RR = 2.6244: (2.5208-2.7322)] and O [RR = 2.4008: (2.1859-2.6368)] concentrations. A 10 μg/m increase in concentrations of PM [RR = 3.0418: (2.7344-3.3838)], PM [RR = 2.6202: (2.1602-3.1781)], NO [RR = 3.2226: (2.1411-4.8504)], CO [RR = 1.8021 (0.8045-4.0370)] and O [RR = 2.3270 (1.5906-3.4045)] was significantly associated with COVID-19 mortality. Stratified analysis showed that study design, exposure period, and country influenced exposure-response associations. Meta-regression model indicated significant predictors for air pollution-COVID-19 incidence associations.

CONCLUSION

The study, while robust, lacks causality demonstration and focuses only on the USA and China, limiting its generalizability. Regardless, the study provides a strong evidence base for air pollution-COVID-19-risks associations, offering valuable insights for intervention measures for COVID-19.

摘要

引言

据推测,空气污染会增加2019冠状病毒病(COVID-19)的风险。然而,结果仍然不一致且尚无定论。本研究旨在通过荟萃分析和荟萃回归模型探讨环境空气污染(AAP)与COVID-19风险之间的关联。

方法

纳入标准为:使用效应量和95%置信区间(CIs)量化关联的原始研究;英文的时间序列、队列、生态或病例交叉同行评审研究。排除标准包括非原始研究、动物研究和存在常见错误的数据。系统检索了PubMed、科学网、Embase和谷歌学术电子数据库,以获取截至2023年3月31日的符合条件的文献。根据医疗保健研究与质量局的参数评估偏倚风险(ROB)。采用随机效应模型计算合并风险比(RRs)及其95%CI。

结果

2020年至2023年间共有58项研究符合纳入标准。全球代表性不均衡,美国(24.1%)和中国(22.4%)贡献较大。分布包括短期(43.1%)和长期(56.9%)空气污染暴露研究。生态研究占51.7%,时间序列研究占27.6%,队列研究占17.2%,病例交叉研究占3.4%。ROB评估显示低风险(86.2%)和中度风险(13.8%)。COVID-19发病率随着PM浓度每增加10μg/m³[RR = 4.9045;95%CI(4.1548 - 5.7895)]、PM浓度每增加10μg/m³[RR = 2.9427:(2.2290 - 3.8850)]、NO浓度每增加10μg/m³[RR = 3.2750:(3.1420 - 3.4136)]、SO浓度每增加10μg/m³[RR = 3.3400:(2.7931 - 3.9940)]、CO浓度每增加10μg/m³[RR = 2.6244:(2.5208 - 2.7322)]和O浓度每增加10μg/m³[RR = 2.4008:(2.1859 - 2.6368)]而增加。PM浓度每增加10μg/m³[RR = 3.0418:(2.7344 - 3.3838)]、PM浓度每增加10μg/m³[RR = 2.6202:(2.1602 - 3.1781)]、NO浓度每增加10μg/m³[RR = 3.2226:(2.1411 - 4.8504)]、CO浓度每增加10μg/m³[RR = 1.8021(0.8045 - 4.0370)]和O浓度每增加10μg/m³[RR = 2.3270(1.5906 - 3.4045)]与COVID-19死亡率显著相关。分层分析表明,研究设计、暴露期和国家影响暴露-反应关联。荟萃回归模型表明空气污染与COVID-19发病率关联的显著预测因素。

结论

该研究虽然有力,但缺乏因果关系证明,且仅关注美国和中国,限制了其普遍性。尽管如此,该研究为空气污染与COVID-19风险关联提供了有力的证据基础,为COVID-19的干预措施提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84eb/11341291/f48ca8798e52/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验