Suppr超能文献

评估自动语音识别技术在急诊医学环境中的有效性:四种人工智能驱动引擎的比较研究。

Assessing the Effectiveness of Automatic Speech Recognition Technology in Emergency Medicine Settings: A Comparative Study of Four AI-powered Engines.

作者信息

Luo Xiao, Zhou Le, Adelgais Kathleen, Zhang Zhan

出版信息

Res Sq. 2024 Aug 17:rs.3.rs-4727659. doi: 10.21203/rs.3.rs-4727659/v1.

Abstract

Purpose Cutting-edge automatic speech recognition (ASR) technology holds significant promise in transcribing and recognizing medical information during patient encounters, thereby enabling automatic and real-time clinical documentation, which could significantly alleviate care clinicians' burdens. Nevertheless, the performance of current-generation ASR technology in analyzing conversations in noisy and dynamic medical settings, such as prehospital or Emergency Medical Services (EMS), lacks sufficient validation. This study explores the current technological limitations and future potential of deploying ASR technology for clinical documentation in fast-paced and noisy medical settings such as EMS. Methods In this study, we evaluated four ASR engines, including Google Speech-to-Text Clinical Conversation, OpenAI Speech-to-Text, Amazon Transcribe Medical, and Azure Speech-to-Text engine. The empirical data used for evaluation were 40 EMS simulation recordings. The transcribed texts were analyzed for accuracy against 23 Electronic Health Records (EHR) categories of EMS. The common types of errors in transcription were also analyzed. Results Among all four ASR engines, Google Speech-to-Text Clinical Conversation performed the best. Among all EHR categories, better performance was observed in categories "mental state" (F1 = 1.0), "allergies" (F1 = 0.917), "past medical history" (F1 = 0.804), "electrolytes" (F1 = 1.0), and "blood glucose level" (F1 = 0.813). However, all four ASR engines demonstrated low performance in transcribing certain critical categories, such as "treatment" (F1 = 0.650) and "medication" (F1 = 0.577). Conclusion Current ASR solutions fall short in fully automating the clinical documentation in EMS setting. Our findings highlight the need for further improvement and development of automated clinical documentation technology to improve recognition accuracy in time-critical and dynamic medical settings.

摘要

目的 前沿的自动语音识别(ASR)技术在转录和识别患者就诊期间的医疗信息方面具有巨大潜力,从而实现自动实时临床记录,这可显著减轻医护人员的负担。然而,当前一代ASR技术在分析嘈杂且动态的医疗环境(如院前或紧急医疗服务(EMS))中的对话时,缺乏充分验证。本研究探讨了在诸如EMS等快节奏且嘈杂的医疗环境中部署ASR技术用于临床记录的当前技术局限性和未来潜力。方法 在本研究中,我们评估了四个ASR引擎,包括谷歌语音转文本临床对话、OpenAI语音转文本、亚马逊转录医疗和Azure语音转文本引擎。用于评估的实证数据是40条EMS模拟录音。针对23个EMS电子健康记录(EHR)类别分析转录文本的准确性。还分析了转录中常见的错误类型。结果 在所有四个ASR引擎中,谷歌语音转文本临床对话表现最佳。在所有EHR类别中,“精神状态”(F1 = 1.0)、“过敏”(F1 = 0.917)、“既往病史”(F1 = 0.804)、“电解质”(F1 = 1.0)和“血糖水平”(F1 = 0.813)类别表现较好。然而,所有四个ASR引擎在转录某些关键类别(如“治疗”(F1 = 0.650)和“药物”(F1 = 0.577))时表现不佳。结论 当前的ASR解决方案在完全自动化EMS环境中的临床记录方面存在不足。我们的研究结果凸显了进一步改进和开发自动化临床记录技术以提高在时间紧迫和动态医疗环境中识别准确性的必要性。

相似文献

10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验