Simmons Sean K, Adiconis Xian, Haywood Nathan, Parker Jacob, Lin Zechuan, Liao Zhixiang, Tuncali Idil, Al'Khafaji Aziz M, Shin Asa, Jagadeesh Karthik, Gosik Kirk, Gatzen Michael, Smith Jonathan T, El Kodsi Daniel N, Kuras Yuliya, Baecher-Allan Clare, Serrano Geidy E, Beach Thomas G, Garimella Kiran, Rozenblatt-Rosen Orit, Regev Aviv, Dong Xianjun, Scherzer Clemens R, Levin Joshua Z
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
bioRxiv. 2025 Jan 15:2024.08.13.607784. doi: 10.1101/2024.08.13.607784.
Single-cell RNA-seq (scRNA-seq) is emerging as a powerful tool for understanding gene function across diverse cells. Recently, this has included the use of allele-specific expression (ASE) analysis to better understand how variation in the human genome affects RNA expression at the single-cell level. We reasoned that because intronic reads are more prevalent in single-nucleus RNA-Seq (snRNA-Seq), and introns are under lower purifying selection and thus enriched for genetic variants, that snRNA-seq should facilitate single-cell analysis of ASE. Here we demonstrate how experimental and computational choices can improve the results of allelic imbalance analysis. We explore how experimental choices, such as RNA source, read length, sequencing depth, genotyping, etc., impact the power of ASE-based methods. We developed a new suite of computational tools to process and analyze scRNA-seq and snRNA-seq for ASE. As hypothesized, we extracted more ASE information from reads in intronic regions than those in exonic regions and show how read length can be set to increase power. Additionally, hybrid selection improved our power to detect allelic imbalance in genes of interest. We also explored methods to recover allele-specific isoform expression levels from both long- and short-read snRNA-seq. To further investigate ASE in the context of human disease, we applied our methods to a Parkinson's disease cohort of 94 individuals and show that ASE analysis had more power than eQTL analysis to identify significant SNP/gene pairs in our direct comparison of the two methods. Overall, we provide an end-to-end experimental and computational approach for future studies.
单细胞RNA测序(scRNA-seq)正成为一种了解不同细胞中基因功能的强大工具。最近,这包括使用等位基因特异性表达(ASE)分析,以更好地理解人类基因组变异如何在单细胞水平上影响RNA表达。我们推断,由于内含子读数在单核RNA测序(snRNA-Seq)中更为普遍,并且内含子处于较低的纯化选择之下,因此富含遗传变异,所以snRNA-seq应该有助于ASE的单细胞分析。在这里,我们展示了实验和计算选择如何能够改善等位基因不平衡分析的结果。我们探讨了诸如RNA来源、读数长度、测序深度、基因分型等实验选择如何影响基于ASE的方法的效能。我们开发了一套新的计算工具,用于处理和分析scRNA-seq和snRNA-seq以进行ASE分析。正如所假设的,我们从内含子区域的读数中提取了比外显子区域更多的ASE信息,并展示了如何设置读数长度以提高效能。此外,杂交选择提高了我们检测感兴趣基因中等位基因不平衡的能力。我们还探索了从长读长和短读长snRNA-seq中恢复等位基因特异性异构体表达水平的方法。为了在人类疾病背景下进一步研究ASE,我们将我们的方法应用于一个由94名个体组成的帕金森病队列,并表明在我们对这两种方法的直接比较中,ASE分析在识别显著的SNP/基因对方面比eQTL分析更具效能。总体而言,我们为未来的研究提供了一种端到端的实验和计算方法。