Suppr超能文献

通过深度生成模型扩展脑扩散磁共振成像的视野

Field-of-view extension for brain diffusion MRI via deep generative models.

作者信息

Gao Chenyu, Bao Shunxing, Kim Michael E, Newlin Nancy R, Kanakaraj Praitayini, Yao Tianyuan, Rudravaram Gaurav, Huo Yuankai, Moyer Daniel, Schilling Kurt, Kukull Walter A, Toga Arthur W, Archer Derek B, Hohman Timothy J, Landman Bennett A, Li Zhiyuan

机构信息

Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States.

Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States.

出版信息

J Med Imaging (Bellingham). 2024 Jul;11(4):044008. doi: 10.1117/1.JMI.11.4.044008. Epub 2024 Aug 24.

Abstract

PURPOSE

In brain diffusion magnetic resonance imaging (dMRI), the volumetric and bundle analyses of whole-brain tissue microstructure and connectivity can be severely impeded by an incomplete field of view (FOV). We aim to develop a method for imputing the missing slices directly from existing dMRI scans with an incomplete FOV. We hypothesize that the imputed image with a complete FOV can improve whole-brain tractography for corrupted data with an incomplete FOV. Therefore, our approach provides a desirable alternative to discarding the valuable brain dMRI data, enabling subsequent tractography analyses that would otherwise be challenging or unattainable with corrupted data.

APPROACH

We propose a framework based on a deep generative model that estimates the absent brain regions in dMRI scans with an incomplete FOV. The model is capable of learning both the diffusion characteristics in diffusion-weighted images (DWIs) and the anatomical features evident in the corresponding structural images for efficiently imputing missing slices of DWIs in the incomplete part of the FOV.

RESULTS

For evaluating the imputed slices, on the Wisconsin Registry for Alzheimer's Prevention (WRAP) dataset, the proposed framework achieved , , , and ; on the National Alzheimer's Coordinating Center (NACC) dataset, it achieved , , , and . The proposed framework improved the tractography accuracy, as demonstrated by an increased average Dice score for 72 tracts ( ) on both the WRAP and NACC datasets.

CONCLUSIONS

Results suggest that the proposed framework achieved sufficient imputation performance in brain dMRI data with an incomplete FOV for improving whole-brain tractography, thereby repairing the corrupted data. Our approach achieved more accurate whole-brain tractography results with an extended and complete FOV and reduced the uncertainty when analyzing bundles associated with Alzheimer's disease.

摘要

目的

在脑扩散磁共振成像(dMRI)中,全脑组织结构和连通性的体积分析与束分析可能会因视野(FOV)不完整而受到严重阻碍。我们旨在开发一种方法,直接从视野不完整的现有dMRI扫描中插补缺失的切片。我们假设具有完整视野的插补图像可以改善针对视野不完整的损坏数据的全脑纤维束成像。因此,我们的方法为丢弃有价值的脑dMRI数据提供了一种理想的替代方案,使得后续的纤维束成像分析在处理损坏数据时原本具有挑战性或无法实现的情况成为可能。

方法

我们提出了一个基于深度生成模型的框架,该模型可估计视野不完整的dMRI扫描中缺失的脑区。该模型能够学习扩散加权图像(DWI)中的扩散特征以及相应结构图像中明显的解剖特征,以便有效地插补视野不完整部分中DWI的缺失切片。

结果

为了评估插补切片,在威斯康星州阿尔茨海默病预防登记处(WRAP)数据集上,所提出的框架实现了[具体指标1]、[具体指标2]、[具体指标3]和[具体指标4];在国家阿尔茨海默病协调中心(NACC)数据集上,它实现了[具体指标5]、[具体指标6]、[具体指标7]和[具体指标8]。所提出的框架提高了纤维束成像的准确性,如在WRAP和NACC数据集上,72条纤维束的平均骰子系数得分增加([具体数值])所示。

结论

结果表明,所提出的框架在视野不完整的脑dMRI数据中实现了足够的插补性能,可改善全脑纤维束成像,从而修复损坏的数据。我们的方法通过扩展和完整的视野实现了更准确的全脑纤维束成像结果,并在分析与阿尔茨海默病相关的纤维束时降低了不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6f5/11344266/024858e64934/JMI-011-044008-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验