School of Psychology, University of Sussex, Brighton, UK.
McConnell Brain Imaging Centre, The Neuro (Montreal Neurological Institute - Hospital), McGill University, Montreal, Quebec, Canada.
Hum Brain Mapp. 2024 Aug 15;45(12):e70003. doi: 10.1002/hbm.70003.
Computationally expensive data processing in neuroimaging research places demands on energy consumption-and the resulting carbon emissions contribute to the climate crisis. We measured the carbon footprint of the functional magnetic resonance imaging (fMRI) preprocessing tool fMRIPrep, testing the effect of varying parameters on estimated carbon emissions and preprocessing performance. Performance was quantified using (a) statistical individual-level task activation in regions of interest and (b) mean smoothness of preprocessed data. Eight variants of fMRIPrep were run with 257 participants who had completed an fMRI stop signal task (the same data also used in the original validation of fMRIPrep). Some variants led to substantial reductions in carbon emissions without sacrificing data quality: for instance, disabling FreeSurfer surface reconstruction reduced carbon emissions by 48%. We provide six recommendations for minimising emissions without compromising performance. By varying parameters and computational resources, neuroimagers can substantially reduce the carbon footprint of their preprocessing. This is one aspect of our research carbon footprint over which neuroimagers have control and agency to act upon.
神经影像学研究中的计算密集型数据处理对能源消耗提出了要求,而由此产生的碳排放加剧了气候危机。我们测量了功能磁共振成像(fMRI)预处理工具 fMRIPrep 的碳足迹,测试了不同参数对估计碳排放和预处理性能的影响。性能使用以下两个方面进行量化:(a) 感兴趣区域的个体水平任务激活的统计数据,以及 (b) 预处理后数据的平均平滑度。使用完成 fMRI 停止信号任务的 257 名参与者运行了 8 种 fMRIPrep 变体(fMRIPrep 的原始验证也使用了相同的数据)。有些变体在不牺牲数据质量的情况下大大减少了碳排放:例如,禁用 FreeSurfer 表面重建可将碳排放减少 48%。我们提供了六项建议,以在不影响性能的情况下尽量减少排放。通过改变参数和计算资源,神经成像研究人员可以大大降低预处理的碳足迹。这是神经成像研究人员可以控制和采取行动的研究碳足迹的一个方面。