Song Zhen, Zhou Yihao, Wang Jianfa, Zong-Hao Ma Christina, Zheng Yongping
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Nov;71(11):1501-1513. doi: 10.1109/TUFFC.2024.3445434. Epub 2024 Nov 27.
Quantitative muscle function analysis based on ultrasound imaging, has been used for various applications, particularly with recent development of deep learning methods. The nature of speckle noises in ultrasound images poses challenges to accurate and reliable data annotation for supervised learning algorithms. To obtain a large and reliable dataset without manual scanning and labeling, we proposed a synthesizing pipeline to provide synthetic ultrasound datasets of muscle movement with an accurate ground truth, allowing augmenting, training, and evaluating models for different tasks. Our pipeline contained biomechanical simulation using a finite-element method (FEM), an algorithm for reconstructing sparse fascicles, and a diffusion network for ultrasound image generation. With the adjustment of a few parameters, the proposed pipeline can generate a large dataset of real-time ultrasound images with diversity in morphology and pattern. With 3030 ultrasound images generated, we qualitatively and quantitatively verified that the synthetic images closely matched with the in vivo images. In addition, we applied the synthetic dataset to different tasks of muscle analysis. Compared to trained on an unaugmented dataset, a model trained on synthetic one had better cross-dataset performance, which demonstrates the feasibility of synthesizing pipeline to augment model training and avoid overfitting. The results of the regression task show potentials under the conditions that the number of datasets or the accurate label is limited. The proposed synthesizing pipeline can not only be used for muscle-related study but also for other similar study and model development, where sequential images are needed for training.
基于超声成像的定量肌肉功能分析已被用于各种应用,特别是随着深度学习方法的最新发展。超声图像中的散斑噪声特性对监督学习算法的准确可靠数据标注提出了挑战。为了在无需人工扫描和标记的情况下获得大量可靠的数据集,我们提出了一种合成管道,以提供具有准确真实标注的肌肉运动合成超声数据集,从而能够对不同任务的模型进行增强、训练和评估。我们的管道包括使用有限元方法(FEM)的生物力学模拟、一种用于重建稀疏肌束的算法以及一个用于超声图像生成的扩散网络。通过调整几个参数,所提出的管道可以生成大量具有形态和模式多样性的实时超声图像数据集。通过生成的3030幅超声图像,我们在定性和定量上验证了合成图像与体内图像紧密匹配。此外,我们将合成数据集应用于肌肉分析的不同任务。与在未增强数据集上训练的模型相比,在合成数据集上训练的模型具有更好的跨数据集性能,这证明了合成管道增强模型训练并避免过拟合的可行性。回归任务的结果表明,在数据集数量或准确标签有限的情况下具有潜力。所提出的合成管道不仅可用于肌肉相关研究,还可用于其他需要序列图像进行训练的类似研究和模型开发。