Wheeler Timothy William, Hunter Kaitlyn, Garcia Patricia Anne, Li Henry, Thomson Andrew Clark, Hunter Allan, Mehanian Courosh
Department of Bioengineering, University of Oregon, Eugene, Oregon, United States of America.
Oregon Eye Consultants, Eugene, Oregon, United States of America.
PLOS Digit Health. 2024 Aug 26;3(8):e0000411. doi: 10.1371/journal.pdig.0000411. eCollection 2024 Aug.
There is a growing interest in using computer-assisted models for the detection of macular conditions using optical coherence tomography (OCT) data. As the quantity of clinical scan data of specific conditions is limited, these models are typically developed by fine-tuning a generalized network to classify specific macular conditions of interest. Full thickness macular holes (FTMH) present a condition requiring urgent surgical repair to prevent vision loss. Other works on automated FTMH classification have tended to use supervised ImageNet pre-trained networks with good results but leave room for improvement. In this paper, we develop a model for FTMH classification using OCT B-scans around the central foveal region to pre-train a naïve network using contrastive self-supervised learning. We found that self-supervised pre-trained networks outperform ImageNet pre-trained networks despite a small training set size (284 eyes total, 51 FTMH+ eyes, 3 B-scans from each eye). On three replicate data splits, 3D spatial contrast pre-training yields a model with an average F1-score of 1.0 on holdout data (50 eyes total, 10 FTMH+), compared to an average F1-score of 0.831 for FTMH detection by ImageNet pre-trained models. These results demonstrate that even limited data may be applied toward self-supervised pre-training to substantially improve performance for FTMH classification, indicating applicability toward other OCT-based problems.
利用光学相干断层扫描(OCT)数据,使用计算机辅助模型来检测黄斑疾病的兴趣与日俱增。由于特定疾病的临床扫描数据量有限,这些模型通常是通过微调一个通用网络来对感兴趣的特定黄斑疾病进行分类而开发的。全层黄斑裂孔(FTMH)是一种需要紧急手术修复以防止视力丧失的疾病。其他关于FTMH自动分类的研究倾向于使用在ImageNet上预训练的有监督网络,且取得了不错的结果,但仍有改进空间。在本文中,我们开发了一种用于FTMH分类的模型,该模型使用中央凹区域周围的OCT B扫描来通过对比自监督学习对一个简单网络进行预训练。我们发现,尽管训练集规模较小(总共284只眼睛,51只FTMH +眼睛,每只眼睛有3次B扫描),但自监督预训练网络的性能优于ImageNet预训练网络。在三次重复的数据划分中,3D空间对比预训练产生的模型在验证数据(总共50只眼睛,10只FTMH +)上的平均F1分数为1.0,而ImageNet预训练模型检测FTMH的平均F1分数为0.831。这些结果表明,即使是有限的数据也可用于自监督预训练,以大幅提高FTMH分类的性能,这表明其适用于其他基于OCT的问题。