Suppr超能文献

MAGICAL:一种使用蛋白质-蛋白质相互作用网络预测合成致死和可行相互作用的多类分类器。

MAGICAL: A multi-class classifier to predict synthetic lethal and viable interactions using protein-protein interaction network.

机构信息

Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India.

Centre for Bioinformatics Research, SRKR Engineering College, Andhra Pradesh, India.

出版信息

PLoS Comput Biol. 2024 Aug 26;20(8):e1012336. doi: 10.1371/journal.pcbi.1012336. eCollection 2024 Aug.

Abstract

Synthetic lethality (SL) and synthetic viability (SV) are commonly studied genetic interactions in the targeted therapy approach in cancer. In SL, inhibiting either of the genes does not affect the cancer cell survival, but inhibiting both leads to a lethal phenotype. In SV, inhibiting the vulnerable gene makes the cancer cell sick; inhibiting the partner gene rescues and promotes cell viability. Many low and high-throughput experimental approaches have been employed to identify SLs and SVs, but they are time-consuming and expensive. The computational tools for SL prediction involve statistical and machine-learning approaches. Almost all machine learning tools are binary classifiers and involve only identifying SL pairs. Most importantly, there are limited properties known that best describe and discriminate SL from SV. We developed MAGICAL (Multi-class Approach for Genetic Interaction in Cancer via Algorithm Learning), a multi-class random forest based machine learning model for genetic interaction prediction. Network properties of protein derived from physical protein-protein interactions are used as features to classify SL and SV. The model results in an accuracy of ~80% for the training dataset (CGIdb, BioGRID, and SynLethDB) and performs well on DepMap and other experimentally derived reported datasets. Amongst all the network properties, the shortest path, average neighbor2, average betweenness, average triangle, and adhesion have significant discriminatory power. MAGICAL is the first multi-class model to identify discriminatory features of synthetic lethal and viable interactions. MAGICAL can predict SL and SV interactions with better accuracy and precision than any existing binary classifier.

摘要

合成致死性 (SL) 和合成生存性 (SV) 是癌症靶向治疗中常用的遗传相互作用。在 SL 中,抑制任何一个基因都不会影响癌细胞的存活,但抑制两个基因会导致致命表型。在 SV 中,抑制脆弱基因会使癌细胞生病;抑制伙伴基因会挽救并促进细胞活力。已经采用了许多低通量和高通量的实验方法来识别 SL 和 SV,但它们耗时且昂贵。用于预测 SL 的计算工具涉及统计和机器学习方法。几乎所有的机器学习工具都是二进制分类器,只涉及识别 SL 对。最重要的是,目前还不知道哪些特性可以最好地描述和区分 SL 和 SV。我们开发了 MAGICAL(通过算法学习进行癌症遗传相互作用的多类方法),这是一种基于多类随机森林的机器学习模型,用于遗传相互作用预测。从物理蛋白质-蛋白质相互作用中衍生的蛋白质的网络特性被用作分类 SL 和 SV 的特征。该模型在训练数据集(CGIdb、BioGRID 和 SynLethDB)上的准确率约为 80%,在 DepMap 和其他实验衍生的报告数据集中表现良好。在所有网络特性中,最短路径、平均邻居 2、平均介数、平均三角形和黏附具有显著的区分能力。MAGICAL 是第一个识别合成致死和生存相互作用的有区别特征的多类模型。MAGICAL 可以预测 SL 和 SV 相互作用,其准确性和精度都优于任何现有的二进制分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验