Suppr超能文献

通过机器学习预测合成致死性来揭示癌症脆弱性。

Uncovering cancer vulnerabilities by machine learning prediction of synthetic lethality.

机构信息

BioMed X Institute (GmbH), Im Neuenheimer Feld 583, 69120, Heidelberg, Germany.

Division of Molecular and Translational Radiation Oncology, National Centre for Tumour Diseases (NCT), Heidelberg University Hospital, 69120, Heidelberg, Germany.

出版信息

Mol Cancer. 2021 Aug 28;20(1):111. doi: 10.1186/s12943-021-01405-8.

Abstract

BACKGROUND

Synthetic lethality describes a genetic interaction between two perturbations, leading to cell death, whereas neither event alone has a significant effect on cell viability. This concept can be exploited to specifically target tumor cells. CRISPR viability screens have been widely employed to identify cancer vulnerabilities. However, an approach to systematically infer genetic interactions from viability screens is missing.

METHODS

Here we describe PAn-canceR Inferred Synthetic lethalities (PARIS), a machine learning approach to identify cancer vulnerabilities. PARIS predicts synthetic lethal (SL) interactions by combining CRISPR viability screens with genomics and transcriptomics data across hundreds of cancer cell lines profiled within the Cancer Dependency Map.

RESULTS

Using PARIS, we predicted 15 high confidence SL interactions within 549 DNA damage repair (DDR) genes. We show experimental validation of an SL interaction between the tumor suppressor CDKN2A, thymidine phosphorylase (TYMP) and the thymidylate synthase (TYMS), which may allow stratifying patients for treatment with TYMS inhibitors. Using genome-wide mapping of SL interactions for DDR genes, we unraveled a dependency between the aldehyde dehydrogenase ALDH2 and the BRCA-interacting protein BRIP1. Our results suggest BRIP1 as a potential therapeutic target in ~ 30% of all tumors, which express low levels of ALDH2.

CONCLUSIONS

PARIS is an unbiased, scalable and easy to adapt platform to identify SL interactions that should aid in improving cancer therapy with increased availability of cancer genomics data.

摘要

背景

合成致死性描述了两个扰动之间的遗传相互作用,导致细胞死亡,而单独的这两个事件都不会对细胞活力产生显著影响。这个概念可以被利用来专门针对肿瘤细胞。CRISPR 生存力筛选已被广泛用于识别癌症弱点。然而,从生存力筛选中系统推断遗传相互作用的方法尚不存在。

方法

在这里,我们描述了 PAn-canceR 推断的合成致死性(PARIS),这是一种用于识别癌症弱点的机器学习方法。PARIS 通过将 CRISPR 生存力筛选与基因组学和转录组学数据相结合,来预测合成致死性(SL)相互作用,这些数据来自癌症依赖性图谱中数百个癌症细胞系的特征。

结果

使用 PARIS,我们预测了 549 个 DNA 损伤修复(DDR)基因中的 15 个高可信度的 SL 相互作用。我们展示了肿瘤抑制因子 CDKN2A、胸苷磷酸化酶(TYMP)和胸苷酸合成酶(TYMS)之间的 SL 相互作用的实验验证,这可能允许对接受 TYMS 抑制剂治疗的患者进行分层。通过对 DDR 基因的全基因组 SL 相互作用作图,我们揭示了醛脱氢酶 ALDH2 和 BRCA 相互作用蛋白 BRIP1 之间的依赖性。我们的结果表明,BRIP1 可能是表达低水平 ALDH2 的所有肿瘤中约 30%的潜在治疗靶点。

结论

PARIS 是一种无偏见、可扩展且易于适应的平台,可用于识别 SL 相互作用,这应该有助于通过增加癌症基因组学数据的可用性来改善癌症治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09ca/8401190/90b27d766ce7/12943_2021_1405_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验