Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea.
Sci Rep. 2024 Aug 26;14(1):19749. doi: 10.1038/s41598-024-70207-x.
Plastic pollution is a problem that threatens the future of humanity, and various methods are being researched to solve it. Plastic biodegradation using microorganisms is one of these methods, and a recent study reported that plastic-degrading microorganisms activated by plasma increase the plastic decomposition rate. In contrast to microbial sterilization using low-temperature plasma, microbial activation requires a stable plasma discharge with a low electrode temperature suitable for biological samples and precise control over a narrow operating range. In this study, various plasma characteristics were evaluated using SDBD (Surface Dielectric Barrier Discharge) to establish the optimal conditions of plasma that can activate plastic-degrading microorganisms. The SDBD electrode was manufactured using low-temperature co-fired ceramic (LTCC) technology to ensure chemical resistance, minimize impurities, improve heat conduction, and consider freedom in designing the electrode metal part. Plasma stability, which is important for microbial activation, was investigated by changing the frequency and pulse width of the voltage applied to the electrode, and the degree of activation of plastic-degrading microorganisms was evaluated under each condition. The results of this study are expected to be used as basic data for research on the activation of useful microorganisms using low-temperature plasma.
塑料污染是威胁人类未来的一个问题,目前正在研究各种方法来解决它。利用微生物进行塑料生物降解就是其中一种方法,最近的一项研究报告称,等离子体激活的塑料降解微生物会提高塑料的分解速度。与使用低温等离子体进行微生物灭菌不同,微生物激活需要稳定的等离子体放电,电极温度低,适合生物样本,并能精确控制在较窄的工作范围内。在这项研究中,使用 SDBD(表面介质阻挡放电)评估了各种等离子体特性,以确定能够激活塑料降解微生物的最佳等离子体条件。SDBD 电极采用低温共烧陶瓷(LTCC)技术制造,以确保耐化学性、最小化杂质、改善热传导,并考虑电极金属部分的设计自由度。通过改变施加到电极的电压的频率和脉冲宽度来研究等离子体的稳定性,这对微生物激活很重要,并在每种条件下评估塑料降解微生物的激活程度。这项研究的结果有望被用作利用低温等离子体激活有益微生物的研究的基础数据。