Suppr超能文献

光的轨道角动量在多重散射环境中的相位保持。

Phase preservation of orbital angular momentum of light in multiple scattering environment.

作者信息

Meglinski Igor, Lopushenko Ivan, Sdobnov Anton, Bykov Alexander

机构信息

College of Engineering and Physical Sciences, Aston University, Birmingham, B4 7ET, UK.

Optoelectronics and Measurement Techniques, University of Oulu, Oulu, FI-90014, Finland.

出版信息

Light Sci Appl. 2024 Aug 26;13(1):214. doi: 10.1038/s41377-024-01562-7.

Abstract

Recent advancements in wavefront shaping techniques have facilitated the study of complex structured light's propagation with orbital angular momentum (OAM) within various media. The introduction of spiral phase modulation to the Laguerre-Gaussian (LG) beam during its paraxial propagation is facilitated by the negative gradient of the medium's refractive index change over time, leading to a notable increase in the rate of phase twist, effectively observed as phase retardation of the OAM. This approach attains remarkable sensitivity to even the slightest variations in the medium's refractive index (∼10). The phase memory of OAM is revealed as the ability of twisted light to preserve the initial helical phase even propagating through the turbid tissue-like multiple scattering medium. The results confirm fascinating opportunities for exploiting OAM light in biomedical applications, e.g. such as non-invasive trans-cutaneous glucose diagnosis and optical communication through biological tissues and other optically dense media.

摘要

波前整形技术的最新进展促进了对具有轨道角动量(OAM)的复杂结构光在各种介质中传播的研究。在傍轴传播过程中,通过介质折射率随时间的负梯度变化,将螺旋相位调制引入拉盖尔 - 高斯(LG)光束,导致相位扭曲速率显著增加,这有效地表现为OAM的相位延迟。这种方法对介质折射率的哪怕最微小变化(约为10)都具有显著的灵敏度。OAM的相位记忆表现为扭曲光即使在通过浑浊的组织状多重散射介质传播时仍能保持初始螺旋相位的能力。结果证实了在生物医学应用中利用OAM光的迷人机会,例如非侵入性经皮葡萄糖诊断以及通过生物组织和其他光学密集介质进行光通信。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccf2/11347564/b9e9c5498c39/41377_2024_1562_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验