Suppr超能文献

用于从非结构化放射学报告中提取进行性骨转移的微调大语言模型。

The Fine-Tuned Large Language Model for Extracting the Progressive Bone Metastasis from Unstructured Radiology Reports.

作者信息

Kanemaru Noriko, Yasaka Koichiro, Fujita Nana, Kanzawa Jun, Abe Osamu

机构信息

Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):865-872. doi: 10.1007/s10278-024-01242-3. Epub 2024 Aug 26.

Abstract

Early detection of patients with impending bone metastasis is crucial for prognosis improvement. This study aimed to investigate the feasibility of a fine-tuned, locally run large language model (LLM) in extracting patients with bone metastasis in unstructured Japanese radiology report and to compare its performance with manual annotation. This retrospective study included patients with "metastasis" in radiological reports (April 2018-January 2019, August-May 2022, and April-December 2023 for training, validation, and test datasets of 9559, 1498, and 7399 patients, respectively). Radiologists reviewed the clinical indication and diagnosis sections of the radiological report (used as input data) and classified them into groups 0 (no bone metastasis), 1 (progressive bone metastasis), and 2 (stable or decreased bone metastasis). The data for group 0 was under-sampled in training and test datasets due to group imbalance. The best-performing model from the validation set was subsequently tested using the testing dataset. Two additional radiologists (readers 1 and 2) were involved in classifying radiological reports within the test dataset for testing purposes. The fine-tuned LLM, reader 1, and reader 2 demonstrated an accuracy of 0.979, 0.996, and 0.993, sensitivity for groups 0/1/2 of 0.988/0.947/0.943, 1.000/1.000/0.966, and 1.000/0.982/0.954, and time required for classification (s) of 105, 2312, and 3094 in under-sampled test dataset (n = 711), respectively. Fine-tuned LLM extracted patients with bone metastasis, demonstrating satisfactory performance that was comparable to or slightly lower than manual annotation by radiologists in a noticeably shorter time.

摘要

早期发现即将发生骨转移的患者对于改善预后至关重要。本研究旨在探讨经过微调的本地运行大语言模型(LLM)在从非结构化日语放射学报告中提取骨转移患者方面的可行性,并将其性能与人工标注进行比较。这项回顾性研究纳入了放射学报告中有“转移”字样的患者(2018年4月至2019年1月、2022年8月至5月以及2023年4月至12月分别作为训练、验证和测试数据集,患者数量分别为9559、1498和7399例)。放射科医生审查放射学报告的临床指征和诊断部分(用作输入数据),并将其分为0组(无骨转移)、1组(进行性骨转移)和2组(稳定或骨转移减轻)。由于组间不平衡,0组数据在训练和测试数据集中进行了欠采样。随后使用测试数据集对验证集中表现最佳的模型进行测试。另外两名放射科医生(读者1和读者2)参与对测试数据集中的放射学报告进行分类以用于测试目的。经过微调的LLM、读者1和读者2在欠采样测试数据集(n = 711)中的准确率分别为0.979、0.996和0.993,0/1/2组的敏感度分别为0.988/0.947/0.943、1.000/1.000/0.966和1.000/0.982/0.954,分类所需时间(秒)分别为105、2312和3094。经过微调的LLM能够提取骨转移患者,其表现令人满意,在显著更短的时间内与放射科医生的人工标注相当或略低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a5c/11950591/302b9b418d9f/10278_2024_1242_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验