Mathematical Oncology Laboratory, University of Castilla-La Mancha, Ciudad Real, Spain.
Instituto de Instrumentación para la Imagen Molecular (i3M), Universitat Politécnica de València, Consejo Superior de Investigaciones Científicas (CSIC), València, Spain.
Cancer Imaging. 2024 Aug 26;24(1):113. doi: 10.1186/s40644-024-00755-y.
Lung nodules observed in cancer screening are believed to grow exponentially, and their associated volume doubling time (VDT) has been proposed for nodule classification. This retrospective study aimed to elucidate the growth dynamics of lung nodules and determine the best classification as either benign or malignant.
Data were analyzed from 180 participants (73.7% male) enrolled in the I-ELCAP screening program (140 primary lung cancer and 40 benign) with three or more annual CT examinations before resection. Attenuation, volume, mass and growth patterns (decelerated, linear, subexponential, exponential and accelerated) were assessed and compared as classification methods.
Most lung cancers (83/140) and few benign nodules (11/40) exhibited an accelerated, faster than exponential, growth pattern. Half (50%) of the benign nodules versus 26.4% of the malignant ones displayed decelerated growth. Differences in growth patterns allowed nodule malignancy to be classified, the most effective individual variable being the increase in volume between two-year-interval scans (ROC-AUC = 0.871). The same metric on the first two follow-ups yielded an AUC value of 0.769. Further classification into solid, part-solid or non-solid, improved results (ROC-AUC of 0.813 in the first year and 0.897 in the second year).
In our dataset, most lung cancers exhibited accelerated growth in contrast to their benign counterparts. A measure of volumetric growth allowed discrimination between benign and malignant nodules. Its classification power increased when adding information on nodule compactness. The combination of these two meaningful and easily obtained variables could be used to assess malignancy of lung cancer nodules.
癌症筛查中观察到的肺结节被认为呈指数级生长,其相关的体积倍增时间(VDT)已被提出用于结节分类。本回顾性研究旨在阐明肺结节的生长动态,并确定将其分类为良性或恶性的最佳方法。
对 180 名参与者(73.7%为男性)的数据进行了分析,这些参与者参加了 I-ELCAP 筛查计划(140 例原发性肺癌和 40 例良性),在切除前进行了三次或更多次年度 CT 检查。评估并比较了衰减、体积、质量和生长模式(减速、线性、亚指数、指数和加速)作为分类方法。
大多数肺癌(140 例中的 83 例)和少数良性结节(40 例中的 11 例)表现出加速的、快于指数的生长模式。一半(50%)的良性结节与 26.4%的恶性结节表现出减速生长。生长模式的差异允许对结节的恶性程度进行分类,最有效的个体变量是两年间隔扫描时体积的增加(ROC-AUC=0.871)。前两次随访的相同指标得出的 AUC 值为 0.769。进一步将其分为实性、部分实性或非实性,提高了结果(第一年的 ROC-AUC 为 0.813,第二年为 0.897)。
在我们的数据集,大多数肺癌表现出加速生长,而良性结节则相反。体积生长的度量允许区分良性和恶性结节。当添加结节致密性信息时,其分类能力增加。这两个有意义且易于获得的变量的组合可用于评估肺癌结节的恶性程度。