文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Stimuli-responsive silk fibroin for on-demand drug delivery.

作者信息

Lin Xiang, Cai Lijun, Cao Xinyue, Zhao Yuanjin

机构信息

Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering, Southeast University Nanjing China.

Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou China.

出版信息

Smart Med. 2023 Feb 16;2(2):e20220019. doi: 10.1002/SMMD.20220019. eCollection 2023 May.


DOI:10.1002/SMMD.20220019
PMID:39188280
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11235688/
Abstract

Stimuli-responsive "smart" hydrogel biomaterials have attracted great attention in the biomedical field, especially in designing novel on-demand drug delivery systems. As a handful natural biomaterial approved by US Food and Drug Administration, silk fibroin (SF) has unique high temperature resistance as well as tunable structural composition. These properties make it one of the most ideal candidates for on-demand drug delivery. Meanwhile, recent advances in polymer modification and nanomaterials have fostered the development of various stimuli-responsive delivery systems. Here, we first review the recent advance in designing responsive SF-based delivery systems in different stimulus sources. These systems are able to release mediators in a desired manner in response to specific stimuli in active or passive manners. We then describe applications of these specially designed responsive delivery systems in wound healing, tumor therapy, as well as immunomodulation. We also discuss the future challenges and prospects of stimuli-responsive SF-based delivery systems.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/72bacbc732dc/SMMD-2-e20220019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/2cd740bae635/SMMD-2-e20220019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/bdc7d411e05b/SMMD-2-e20220019-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/451204d471ad/SMMD-2-e20220019-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/0548166d664a/SMMD-2-e20220019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/ea8554a58409/SMMD-2-e20220019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/8940bb4f8494/SMMD-2-e20220019-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/ab23d459fcc3/SMMD-2-e20220019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/60757075bba9/SMMD-2-e20220019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/72bacbc732dc/SMMD-2-e20220019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/2cd740bae635/SMMD-2-e20220019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/bdc7d411e05b/SMMD-2-e20220019-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/451204d471ad/SMMD-2-e20220019-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/0548166d664a/SMMD-2-e20220019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/ea8554a58409/SMMD-2-e20220019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/8940bb4f8494/SMMD-2-e20220019-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/ab23d459fcc3/SMMD-2-e20220019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/60757075bba9/SMMD-2-e20220019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b9/11235688/72bacbc732dc/SMMD-2-e20220019-g008.jpg

相似文献

[1]
Stimuli-responsive silk fibroin for on-demand drug delivery.

Smart Med. 2023-2-16

[2]
Synthesis of pH and Glucose Responsive Silk Fibroin Hydrogels.

Int J Mol Sci. 2021-7-1

[3]
Silk Fibroin as a Functional Biomaterial for Drug and Gene Delivery.

Pharmaceutics. 2019-9-26

[4]
Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications.

ACS Appl Bio Mater. 2019-12-16

[5]
A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects.

Mater Today Chem. 2022-3

[6]
Silk Fibroin as an Efficient Biomaterial for Drug Delivery, Gene Therapy, and Wound Healing.

Int J Mol Sci. 2022-11-20

[7]
Silk Fibroin-Based Biomaterials for Biomedical Applications: A Review.

Polymers (Basel). 2019-11-24

[8]
Silk Fibroin Based Drug Delivery Applications: Promises and Challenges.

Curr Drug Targets. 2018

[9]
Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

Acta Biomater. 2015-11-18

[10]
Silk-elastin-like protein biomaterials for the controlled delivery of therapeutics.

Expert Opin Drug Deliv. 2015-5

引用本文的文献

[1]
Bioinspired micro-structured fibers for biomedical applications.

Bioact Mater. 2025-7-14

[2]
Chlorin Activity Enhancers for Photodynamic Therapy.

Molecules. 2025-6-30

[3]
Resveratrol-loaded engineered microcapsules with dual antimicrobial and ROS-scavenging for programmed wound healing.

Mater Today Bio. 2025-6-20

[4]
Conductive Nerve Conduits With Orientated Topological Structures From Ice-Templating Technology.

Smart Med. 2025-6-30

[5]
Revolutionizing neural regeneration with smart responsive materials: Current insights and future prospects.

Bioact Mater. 2025-6-13

[6]
Synergistic therapy for pancreatic cancer by deactivating cancer-associated fibroblasts and driving T-cell migration into tumor microenvironment using nanochaperone delivery system.

Bioact Mater. 2025-6-11

[7]
Multicargo Porous Cochlear Electrode Coating for Antifibrosis After Cochlear Implantation.

Adv Sci (Weinh). 2025-6

[8]
A carrier-free long-acting ropivacaine formulation using methylprednisolone sodium succinate as a dual-functional adjuvant.

Theranostics. 2025-3-3

[9]
Intermittent hypoxic stimulation promotes efficient expression of Hypoxia-inducible factor-1α and exerts a chondroprotective effect in an animal osteoarthritis model.

PLoS One. 2025-4-1

[10]
Recombinant human collagen hydrogels with different stem cell-derived exosomes encapsulation for wound treatment.

J Nanobiotechnology. 2025-3-24

本文引用的文献

[1]
pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy.

Biomater Adv. 2022-8

[2]
A novel sprayable thermosensitive hydrogel coupled with zinc modified metformin promotes the healing of skin wound.

Bioact Mater. 2022-7-1

[3]
Facile Preparation of Silk Fabrics with Enhanced UV Radiation Shielding and Wrinkle Resistance by Cross-Linking Light-Responsive Copolymers.

ACS Appl Mater Interfaces. 2022-6-6

[4]
Peptide-functionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9.

Colloids Surf B Biointerfaces. 2022-8

[5]
Bioactive Fish Scale Scaffolds with MSCs-Loading for Skin Flap Regeneration.

Adv Sci (Weinh). 2022-7

[6]
Oral nanotherapeutics based on Antheraea pernyi silk fibroin for synergistic treatment of ulcerative colitis.

Biomaterials. 2022-3

[7]
Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration.

ACS Nano. 2022-2-22

[8]
Self-Assembled Inhalable Immunomodulatory Silk Fibroin Nanocarriers for Enhanced Drug Loading and Intracellular Antibacterial Activity.

ACS Biomater Sci Eng. 2022-2-14

[9]
Light-driven carbon nitride microswimmers with propulsion in biological and ionic media and responsive on-demand drug delivery.

Sci Robot. 2022-1-19

[10]
Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications.

ACS Appl Bio Mater. 2019-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索