Suppr超能文献

基于计算机断层扫描的影像组学在预测恶性胸腔积液中的价值。

The value of computed tomography-based radiomics for predicting malignant pleural effusions.

作者信息

Xing Zhen-Chuan, Guo Hua-Zheng, Hou Zi-Liang, Zhang Hong-Xia, Zhang Shuai

机构信息

Department of Pulmonary and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China.

Department of Infectious Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, China.

出版信息

Front Oncol. 2024 Aug 12;14:1419343. doi: 10.3389/fonc.2024.1419343. eCollection 2024.

Abstract

BACKGROUND

Malignant pleural effusion (MPE) is a common clinical problem that requires cytological and/or histological confirmation obtained by invasive examination to establish a definitive diagnosis. Radiomics is rapidly evolving and can provide a non-invasive tool to identify MPE.

OBJECTIVES

We aimed to develop a model based on radiomic features extracted from unenhanced chest computed tomography (CT) images and investigate its value in predicting MPE.

METHOD

This retrospective study included patients with pleural effusions between January 2016 and June 2020. All patients underwent a chest CT scanning and medical thoracoscopy after artificial pneumothorax. Cases were divided into a training cohort and a test cohort for modelling and verifying respectively. The Mann-Whitney U test and the least absolute shrinkage and selection operator (LASSO) were applied to determine the optimal features. We built a radiomics model based on support vector machines (SVM) and evaluated its performance using ROC and calibration curve analysis.

RESULTS

Twenty-nine patients with MPE and fifty-two patients with non-MPE were enrolled. A total of 944 radiomic features were quantitatively extracted from each sample and reduced to 14 features for modeling after selection. The AUC of the radiomics model was 0.96 (95% CI: 0.912-0.999) and 0.86 (95% CI: 0.657~1.000) in the training and test cohorts, respectively. The calibration curves for model were in good agreement between predicted and actual data.

CONCLUSIONS

The radiomics model based on unenhanced chest CT has good performance for predicting MPE and may provide a powerful tool for doctors in clinical decision-making.

摘要

背景

恶性胸腔积液(MPE)是一个常见的临床问题,需要通过侵入性检查获得细胞学和/或组织学确认以建立明确诊断。放射组学正在迅速发展,可为识别MPE提供一种非侵入性工具。

目的

我们旨在开发一种基于从胸部平扫计算机断层扫描(CT)图像中提取的放射组学特征的模型,并研究其在预测MPE中的价值。

方法

这项回顾性研究纳入了2016年1月至2020年6月期间有胸腔积液的患者。所有患者在人工气胸后均接受了胸部CT扫描和内科胸腔镜检查。病例分为训练队列和测试队列,分别用于建模和验证。应用曼-惠特尼U检验和最小绝对收缩和选择算子(LASSO)来确定最佳特征。我们基于支持向量机(SVM)构建了一个放射组学模型,并使用ROC和校准曲线分析评估其性能。

结果

纳入了29例MPE患者和52例非MPE患者。从每个样本中定量提取了总共944个放射组学特征,选择后减少到14个特征用于建模。放射组学模型在训练队列和测试队列中的AUC分别为0.96(95%CI:0.912-0.999)和0.86(95%CI:0.657~1.000)。模型的校准曲线在预测数据和实际数据之间具有良好的一致性。

结论

基于胸部平扫CT的放射组学模型在预测MPE方面具有良好性能,可能为医生临床决策提供有力工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/394e/11345134/6a66826feca0/fonc-14-1419343-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验