Suppr超能文献

利用深度学习模型从 CT 成像中提取三维放射组学特征来识别肺癌和肉芽肿

Lung Cancer and Granuloma Identification Using a Deep Learning Model to Extract 3-Dimensional Radiomics Features in CT Imaging.

机构信息

Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China.

School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, People's Republic of China.

出版信息

Clin Lung Cancer. 2021 Sep;22(5):e756-e766. doi: 10.1016/j.cllc.2021.02.004. Epub 2021 Feb 6.

Abstract

BACKGROUND

We aimed to evaluate a deep learning (DL) model combining perinodular and intranodular radiomics features and clinical features for preoperative differentiation of solitary granuloma nodules (GNs) from solid lung cancer nodules in patients with spiculation, lobulation, or pleural indentation on CT.

PATIENTS AND METHODS

We retrospectively recruited 915 patients with solitary solid pulmonary nodules and suspicious signs of malignancy. Data including clinical characteristics and subjective CT findings were obtained. A 3-dimensional U-Net-based DL model was used for tumor segmentation and extraction of 3-dimensional radiomics features. We used the Maximum Relevance and Minimum Redundancy (mRMR) algorithm and the eXtreme Gradient Boosting (XGBoost) algorithm to select the intranodular, perinodular, and gross nodular radiomics features. We propose a medical image DL (IDL) model, a clinical image DL (CIDL) model, a radiomics DL (RDL) model, and a clinical image radiomics DL (CIRDL) model to preoperatively differentiate GNs from solid lung cancer. Five-fold cross-validation was used to select and evaluate the models. The prediction performance of the models was evaluated using receiver operating characteristic and calibration curves.

RESULTS

The CIRDL model achieved the best performance in differentiating between GNs and solid lung cancer (area under the curve [AUC] = 0.9069), which was significantly higher compared with the IDL (AUC = 0.8322), CIDL (AUC = 0.8652), intra-RDL (AUC = 0.8583), peri-RDL (AUC = 0.8259), and gross-RDL (AUC = 0.8705) models.

CONCLUSION

The proposed CIRDL model is a noninvasive diagnostic tool to differentiate between granuloma nodules and solid lung cancer nodules and reduce the need for invasive diagnostic and surgical procedures.

摘要

背景

我们旨在评估一种深度学习(DL)模型,该模型结合了围结节和结节内放射组学特征以及临床特征,用于术前区分 CT 显示有分叶、毛刺或胸膜凹陷的患者中孤立性肉芽肿结节(GN)与实性肺癌结节。

患者和方法

我们回顾性招募了 915 名患有孤立性实性肺结节和恶性可疑征象的患者。获得了包括临床特征和主观 CT 发现的数据。使用三维 U-Net 为基础的 DL 模型进行肿瘤分割和提取三维放射组学特征。我们使用最大相关性和最小冗余(mRMR)算法和极端梯度增强(XGBoost)算法选择结节内、围结节和大体结节放射组学特征。我们提出了一种医学图像深度学习(IDL)模型、一种临床图像深度学习(CILD)模型、一种放射组学深度学习(RDL)模型和一种临床图像放射组学深度学习(CIRDL)模型,用于术前区分 GN 和实性肺癌。使用五折交叉验证选择和评估模型。使用接收者操作特征和校准曲线评估模型的预测性能。

结果

CIRDL 模型在区分 GN 和实性肺癌方面表现最佳(曲线下面积[AUC]为 0.9069),明显高于 IDL(AUC 为 0.8322)、CILD(AUC 为 0.8652)、内放射组学(AUC 为 0.8583)、围放射组学(AUC 为 0.8259)和大体放射组学(AUC 为 0.8705)模型。

结论

所提出的 CIRDL 模型是一种非侵入性诊断工具,可用于区分肉芽肿结节和实性肺癌结节,减少了对侵入性诊断和手术程序的需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验