WellAI, LLC, Sheridan, WY, USA.
Clin Chim Acta. 2023 Aug 1;548:117519. doi: 10.1016/j.cca.2023.117519. Epub 2023 Aug 16.
Artificial Intelligence (AI) and Machine Learning (ML) are powerful tools shaping the healthcare sector. This review considers twelve key aspects of AI in clinical practice: 1) Ethical AI; 2) Explainable AI; 3) Health Equity and Bias in AI; 4) Sponsorship Bias; 5) Data Privacy; 6) Genomics and Privacy; 7) Insufficient Sample Size and Self-Serving Bias; 8) Bridging the Gap Between Training Datasets and Real-World Scenarios; 9) Open Source and Collaborative Development; 10) Dataset Bias and Synthetic Data; 11) Measurement Bias; 12) Reproducibility in AI Research. These categories represent both the challenges and opportunities of AI implementation in healthcare. While AI holds significant potential for improving patient care, it also presents risks and challenges, such as ensuring privacy, combating bias, and maintaining transparency and ethics. The review underscores the necessity of developing comprehensive best practices for healthcare organizations and fostering a diverse dialogue involving data scientists, clinicians, patient advocates, ethicists, economists, and policymakers. We are at the precipice of significant transformation in healthcare powered by AI. By continuing to reassess and refine our approach, we can ensure that AI is implemented responsibly and ethically, maximizing its benefit to patient care and public health.
人工智能(AI)和机器学习(ML)是塑造医疗保健领域的强大工具。本综述考虑了 AI 在临床实践中的十二个关键方面:1)人工智能的伦理;2)可解释性 AI;3)人工智能中的健康公平性和偏见;4)赞助偏见;5)数据隐私;6)基因组学和隐私;7)样本量不足和自利偏见;8)缩小训练数据集与现实场景之间的差距;9)开源和协作开发;10)数据集偏见和合成数据;11)测量偏差;12)AI 研究中的可重复性。这些类别既代表了 AI 在医疗保健中实施的挑战,也代表了机会。虽然 AI 具有改善患者护理的巨大潜力,但它也带来了一些风险和挑战,例如确保隐私、打击偏见、保持透明度和道德。该综述强调了为医疗保健组织制定全面最佳实践以及促进数据科学家、临床医生、患者权益倡导者、伦理学家、经济学家和政策制定者之间多元化对话的必要性。我们正处于由 AI 驱动的医疗保健重大变革的前夕。通过不断重新评估和完善我们的方法,我们可以确保 AI 得到负责任和合乎道德的实施,最大限度地提高其对患者护理和公共卫生的益处。