Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China.
Adv Mater. 2024 Mar;36(13):e2312024. doi: 10.1002/adma.202312024. Epub 2023 Dec 24.
Single-atom nanozymes (SAzymes), with well-defined and uniform atomic structures, are an emerging type of natural enzyme mimics. Currently, it is important but challenging to rationally design high-performance SAzymes and deeply reveal the interaction mechanism between SAzymes and substrate molecules. Herein, this work reports the controllable fabrication of a unique Cu-NS-centred SAzyme (Cu-N/S-C) via a chemical vapor deposition-based sulfur-engineering strategy. Benefiting from the optimized geometric and electronic structures of single-atom sites, Cu-N/S-C SAzyme shows boosted enzyme-like activity, especially in catalase-like activity, with a 13.8-fold increase in the affinity to hydrogen peroxide (HO) substrate and a 65.2-fold increase in the catalytic efficiency when compared to Cu-N-C SAzyme with Cu-N sites. Further theoretical studies reveal that the increased electron density around single-atom Cu is achieved through electron redistribution, and the efficient charge transfer between Cu-N/S-C and HO is demonstrated to be more beneficial for the adsorption and activation of HO. The as-designed Cu-N/S-C SAzyme possesses an excellent antitumor effect through the synergy of catalytic therapy and oxygen-dependent phototherapy. This study provides a strategy for the rational design of SAzymes, and the proposed electron redistribution and charge transfer mechanism will help to understand the coordination environment effect of single-atom metal sites on HO-mediated enzyme-like catalytic processes.
单原子纳米酶 (SAzymes) 具有明确且均匀的原子结构,是一种新兴的天然酶模拟物。目前,合理设计高性能 SAzymes 并深入揭示 SAzymes 与底物分子之间的相互作用机制非常重要但具有挑战性。在此,本工作通过基于化学气相沉积的硫工程策略,报道了一种独特的 Cu-NS 中心 SAzymes (Cu-N/S-C) 的可控制备。受益于单原子位点的优化几何和电子结构,Cu-N/S-C SAzyme 表现出增强的酶样活性,尤其是在类过氧化氢酶活性方面,与具有 Cu-N 位点的 Cu-N/C SAzyme 相比,对过氧化氢 (HO) 底物的亲和力提高了 13.8 倍,催化效率提高了 65.2 倍。进一步的理论研究表明,通过电子重新分布实现了单原子 Cu 周围电子密度的增加,并且证明 Cu-N/S-C 与 HO 之间的有效电荷转移更有利于 HO 的吸附和活化。所设计的 Cu-N/S-C SAzyme 通过催化治疗和氧依赖性光疗的协同作用具有优异的抗肿瘤效果。本研究为 SAzymes 的合理设计提供了一种策略,提出的电子重新分布和电荷转移机制将有助于理解单原子金属位点对 HO 介导的酶样催化过程中的配位环境效应。