Wang Daji, Wang Jie, Gao Xuejiao J, Ding Hui, Yang Ming, He Zhiheng, Xie Jiaying, Zhang Zixia, Huang Haibing, Nie Guohui, Yan Xiyun, Fan Kelong
Nanozyme Synthesis Center, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
Adv Mater. 2024 Feb;36(7):e2310033. doi: 10.1002/adma.202310033. Epub 2023 Dec 7.
Single-atom nanozymes (SANzymes) emerge as promising alternatives to conventional enzymes. However, chemical instability limits their application. Here, a systematic synthesis of highly active and stable SANzymes is presented by leveraging noble metal-porphyrins. Four noble metal-porphyrins are successfully synthesized to mimic the active site of natural peroxidases through atomic metal-N coordination anchored to the porphyrin center. These noble metal-porphyrins are integrated into a stable and biocompatible Zr-based metal-organic framework (MxP, x denoting Ir, Ru, Pt, and Pd). Among these, MIrP demonstrates superior peroxidase-like activity (685.61 U mg ), catalytic efficiency, and selectivity compared to horseradish peroxidase (267.71 U mg ). Mechanistic investigations unveil heightened catalytic activity of MIrP arises from its robust H O adsorption capacity, unique rate-determining step, and low energy threshold. Crucially, MIrP exhibits remarkable chemical stability under both room temperature and high H O concentrations. Further, through modification with (-)-Epigallocatechin-3-Gallate, a natural ligand for Epstein-Barr virus (EBV)-encoded latent membrane protein 1, targeted SANzyme (MIrPHE) tailored for EBV-associated nasopharyngeal carcinoma is engineered. This study not only presents an innovative strategy for augmenting the catalytic activity and chemical stability of SANzymes but also highlights the substantial potential of MIrP as a potent nanomedicine for targeted catalytic tumor therapy.
单原子纳米酶(SANzymes)作为传统酶的有前途的替代品而出现。然而,化学不稳定性限制了它们的应用。在此,通过利用贵金属卟啉,提出了一种高活性和稳定的SANzymes的系统合成方法。成功合成了四种贵金属卟啉,通过锚定在卟啉中心的原子金属-N配位来模拟天然过氧化物酶的活性位点。这些贵金属卟啉被整合到一种稳定且生物相容的锆基金属有机框架(MxP,x表示Ir、Ru、Pt和Pd)中。其中,MIrP与辣根过氧化物酶(267.71 U mg)相比,表现出优异的类过氧化物酶活性(685.61 U mg)、催化效率和选择性。机理研究表明,MIrP的高催化活性源于其强大的H2O2吸附能力、独特的速率决定步骤和低能量阈值。至关重要的是,MIrP在室温和高H2O2浓度下均表现出显著的化学稳定性。此外,通过用(-)-表没食子儿茶素-3-没食子酸酯进行修饰,一种针对爱泼斯坦-巴尔病毒(EBV)编码的潜伏膜蛋白1的天然配体,设计了针对EBV相关鼻咽癌的靶向纳米酶(MIrPHE)。这项研究不仅提出了一种增强SANzymes催化活性和化学稳定性的创新策略,还突出了MIrP作为一种用于靶向催化肿瘤治疗的有效纳米药物的巨大潜力。