Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan.
Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
Plant Cell Environ. 2024 Dec;47(12):5391-5410. doi: 10.1111/pce.15113. Epub 2024 Aug 27.
Glutathione redox cycling is important for cell cycle regulation, but its mechanisms are not well understood. We previously identified a small-sized mutant, suppressor of mat3 15-1 (smt15-1) that has elevated cellular glutathione. Here, we demonstrated that SMT15 is a chloroplast sulphate transporter. Reducing expression of γ-GLUTAMYLCYSTEINE SYNTHETASE, encoding the rate-limiting enzyme required for glutathione biosynthesis, corrected the size defect of smt15-1 cells. Overexpressing GLUTATHIONE SYNTHETASE (GSH2) recapitulated the small-size phenotype of smt15-1 mutant, confirming the role of glutathione in cell division. Hence, SMT15 may regulate chloroplast sulphate concentration to modulate cellular glutathione levels. In wild-type cells, glutathione and/or thiol-containing molecules (GSH/thiol) accumulated in the cytosol at the G1 phase and decreased as cells entered the S/M phase. While the cytosolic GSH/thiol levels in the small-sized mutants, smt15-1 and GSH2 overexpressors, mirrored those of wild-type cells (accumulating during G1 and declining at early S/M phase), GSH/thiol was specifically accumulated in the basal bodies at early S/M phase in the small-sized mutants. Therefore, we propose that GSH/thiol-mediated redox signalling in the basal bodies may regulate mitotic division number in Chlamydomonas reinhardtii. Our findings suggest a new mechanism by which glutathione regulates the multiple fission cell cycle in C. reinhardtii.
谷胱甘肽氧化还原循环对细胞周期调控很重要,但其中的机制尚不清楚。我们之前鉴定了一个小型突变体,mat3 15-1 的抑制子(smt15-1),它具有较高的细胞内谷胱甘肽水平。在这里,我们证明 SMT15 是一种叶绿体硫酸盐转运蛋白。降低编码谷胱甘肽生物合成限速酶的 γ-谷氨酰半胱氨酸合成酶的表达,纠正了 smt15-1 细胞的大小缺陷。过表达谷胱甘肽合成酶(GSH2)重现了 smt15-1 突变体的小细胞表型,证实了谷胱甘肽在细胞分裂中的作用。因此,SMT15 可能通过调节叶绿体硫酸盐浓度来调节细胞内谷胱甘肽水平。在野生型细胞中,谷胱甘肽和/或含硫分子(GSH/硫醇)在 G1 期积累在细胞质中,随着细胞进入 S/M 期而减少。虽然 smt15-1 和 GSH2 过表达突变体的细胞质 GSH/硫醇水平与野生型细胞相似(在 G1 期积累,在早期 S/M 期减少),但在 smt15-1 突变体中,GSH/硫醇在早期 S/M 期特异性地积累在基底体中。因此,我们提出,基底体中 GSH/硫醇介导的氧化还原信号可能调节莱茵衣藻的有丝分裂分裂数。我们的发现为谷胱甘肽在莱茵衣藻的多分裂细胞周期中调节提供了一个新的机制。