Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany.
INRES-Chemical Signalling, University of Bonn, 53113 Bonn, Germany.
Plant Physiol. 2018 Jul;177(3):927-937. doi: 10.1104/pp.18.00421. Epub 2018 May 11.
Photoautotrophic organisms must efficiently allocate their resources between stress-response pathways and growth-promoting pathways to be successful in a constantly changing environment. In this study, we addressed the coordination of sulfur flux between the biosynthesis of the reactive oxygen species scavenger glutathione (GSH) and protein translation as one example of a central resource allocation switch. We crossed the Arabidopsis () GSH synthesis-depleted cadmium-sensitive mutant, which lacks glutamate cysteine (Cys) ligase, into the sulfite reductase mutant, which suffers from a significantly decreased flux of sulfur into Cys and, consequently, is retarded in growth. Surprisingly, depletion of GSH synthesis promoted the growth of the double mutant () when compared with Determination of GSH levels and in vivo live-cell imaging of the reduction-oxidation-sensitive green fluorescent protein sensor demonstrated significant oxidation of the plastidic GSH redox potential in and This oxidized GSH redox potential aligned with significant activation of plastid-localized sulfate reduction and a significantly higher flux of sulfur into proteins. The specific activation of the serine/threonine sensor kinase Target of Rapamycin (TOR) in and was the trigger for reallocation of Cys from GSH biosynthesis into protein translation. Activation of TOR in enhanced ribosome abundance and partially rescued the decreased meristematic activity observed in mutants. Therefore, we found that the coordination of sulfur flux between GSH biosynthesis and protein translation determines growth via the regulation of TOR.
在不断变化的环境中,光自养生物必须有效地在应激反应途径和促进生长途径之间分配资源,才能取得成功。在这项研究中,我们研究了活性氧清除剂谷胱甘肽 (GSH) 的生物合成与蛋白质翻译之间的硫通量协调作为中央资源分配开关的一个例子。我们将拟南芥 (Arabidopsis) 缺乏谷氨酰半胱氨酸 (Cys) 连接酶的 GSH 合成缺陷型镉敏感突变体 (cadmium-sensitive mutant) 与亚硫酸还原酶突变体 (sulfite reductase mutant) 杂交,后者的硫通量显著减少到 Cys 中,因此生长受阻。令人惊讶的是,与 相比,GSH 合成的耗竭促进了 双突变体 () 的生长。GSH 水平的测定和体内活细胞成像的氧化还原敏感绿色荧光蛋白传感器表明, 和 中的质体 GSH 氧化还原势显著氧化。这种氧化的 GSH 氧化还原势与质体定位的硫酸盐还原的显著激活以及硫通量显著增加到蛋白质中相吻合。丝氨酸/苏氨酸传感器激酶雷帕霉素靶蛋白 (TOR) 在 和 中的特异性激活是将 Cys 从 GSH 生物合成重新分配到蛋白质翻译中的触发因素。在 中激活 TOR 增加了核糖体的丰度,并部分挽救了在 突变体中观察到的分生组织活性降低。因此,我们发现 GSH 生物合成和蛋白质翻译之间的硫通量协调通过调节 TOR 决定了生长。