Suppr超能文献

朝向利用甲基辅酶 M 还原酶于甲烷生物转化应用。

Toward the Use of Methyl-Coenzyme M Reductase for Methane Bioconversion Applications.

机构信息

Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States.

出版信息

Acc Chem Res. 2024 Sep 17;57(18):2746-2757. doi: 10.1021/acs.accounts.4c00413. Epub 2024 Aug 27.

Abstract

ConspectusAs the main component of natural gas and renewable biogas, methane is an abundant, affordable fuel. Thus, there is interest in converting these methane reserves into liquid fuels and commodity chemicals, which would contribute toward mitigating climate change, as well as provide potentially sustainable routes to chemical production. Unfortunately, specific activation of methane for conversion into other molecules is a difficult process due to the unreactive nature of methane C-H bonds. The use of methane activating enzymes, such as methyl-coenzyme M reductase (MCR), may offer a solution. MCR catalyzes the methane-forming step of methanogenesis in methanogenic archaea (methanogens), as well as the initial methane oxidation step during the anaerobic oxidation of methane (AOM) in anaerobic methanotrophic archaea (ANME). In this Account, we highlight our contributions toward understanding MCR catalysis and structure, focusing on features that may tune the catalytic activity. Additionally, we discuss some key considerations for biomanufacturing approaches to MCR-based production of useful compounds.MCR is a complex enzyme consisting of a dimer of heterotrimers with several post-translational modifications, as well as the nickel-hydrocorphin prosthetic group, known as coenzyme F. Since MCR is difficult to study , little information is available regarding which MCRs have ideal catalytic properties. To investigate the role of the MCR active site electronic environment in promoting methane synthesis, we performed electric field calculations based on molecular dynamics simulations with a MCR from and an ANME-1 MCR. Interestingly, the ANME-1 MCR active site better optimizes the electric field with methane formation substrates, indicating that it may have enhanced catalytic efficiency. Our lab has also worked toward understanding the structures and functions of modified F coenzymes, some of which we have discovered in methanogens. We found that methanogens produce modified Fs under specific growth conditions, and we hypothesize that these modifications serve to fine-tune the activity of MCR.Due to the complexity of MCR, a methanogen host is likely the best near-term option for biomanufacturing platforms using methane as a C1 feedstock. has well-established genetic tools and has already been used in pilot methane oxidation studies. To make methane oxidation energetically favorable, extracellular electron acceptors are employed. This electron transfer can be facilitated by carbon-based materials. Interestingly, our analyses of AOM enrichment cultures and pure methanogen cultures revealed the biogenic production of an amorphous carbon material with similar characteristics to activated carbon, thus highlighting the potential use of such materials as conductive elements to enhance extracellular electron transfer.In summary, the possibilities for sustainable MCR-based methane conversions are exciting, but there are still some challenges to tackle toward understanding and utilizing this complex enzyme in efficient methane oxidation biomanufacturing processes. Additionally, further work is necessary to optimize bioengineered MCR-containing host organisms to produce large quantities of desired chemicals.

摘要

简介

作为天然气和可再生沼气的主要成分,甲烷是一种丰富且价格合理的燃料。因此,人们有兴趣将这些甲烷储量转化为液体燃料和大宗商品化学品,这将有助于缓解气候变化,并为化学品生产提供潜在的可持续途径。不幸的是,由于甲烷 C-H 键的反应性低,具体的甲烷转化为其他分子的活化是一个困难的过程。使用甲烷激活酶,如甲基辅酶 M 还原酶 (MCR),可能是一种解决方案。MCR 催化产甲烷古菌(产甲烷菌)中的甲烷形成步骤,以及在厌氧甲烷氧化(AOM)中甲烷的初始氧化步骤,在厌氧甲烷氧化古菌(ANME)中。在本专题中,我们重点介绍了我们在理解 MCR 催化和结构方面的贡献,重点介绍了可能调节催化活性的特征。此外,我们还讨论了基于 MCR 的生物制造方法生产有用化合物的一些关键考虑因素。

MCR 是一种由两个异三聚体组成的复杂酶,具有几种翻译后修饰以及镍-氢化胆素辅基,称为辅酶 F。由于 MCR 难以研究,因此有关具有理想催化特性的 MCR 的信息很少。为了研究 MCR 活性位点电子环境在促进甲烷合成中的作用,我们根据与 和 ANME-1 MCR 一起进行的分子动力学模拟进行了电场计算。有趣的是,ANME-1 MCR 活性位点更好地优化了与甲烷形成底物的电场,表明它可能具有更高的催化效率。我们的实验室还致力于了解修饰 F 辅酶的结构和功能,其中一些我们已经在产甲烷菌中发现。我们发现产甲烷菌在特定的生长条件下产生修饰的 Fs,我们假设这些修饰有助于微调 MCR 的活性。

由于 MCR 的复杂性,使用甲烷作为 C1 进料的生物制造平台可能最适合使用产甲烷菌作为宿主。已经建立了良好的遗传工具,并已用于甲烷氧化的初步研究。为了使甲烷氧化具有能量优势,使用了细胞外电子受体。这种电子转移可以通过碳基材料来促进。有趣的是,我们对 AOM 富集培养物和纯产甲烷菌培养物的分析揭示了一种无定形碳材料的生物合成,其特征与活性炭相似,因此突出了此类材料作为增强细胞外电子转移的导电元件的潜在用途。

总之,基于 MCR 的可持续甲烷转化的可能性令人兴奋,但仍有一些挑战需要解决,以在高效甲烷氧化生物制造过程中理解和利用这种复杂的酶。此外,还需要进一步的工作来优化包含生物工程 MCR 的宿主生物,以生产大量所需的化学品。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21c2/11411713/8ee7a5116c38/ar4c00413_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验