Suppr超能文献

基于集成学习的脑胶质瘤预测及多级别分类方法

Ensemble based machine learning approach for prediction of glioma and multi-grade classification.

机构信息

Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, U.P, India.

Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, U.P, India.

出版信息

Comput Biol Med. 2021 Oct;137:104829. doi: 10.1016/j.compbiomed.2021.104829. Epub 2021 Sep 4.

Abstract

Glioma is the most pernicious cancer of the nervous system, with histological grade influencing the survival of patients. Despite many studies on the multimodal treatment approach, survival time remains brief. In this study, a novel two-stage ensemble of an ensemble-type machine learning-based predictive framework for glioma detection and its histograde classification is proposed. In the proposed framework, five characteristics belonging to 135 subjects were considered: human telomerase reverse transcriptase (hTERT), chitinase-like protein (YKL-40), interleukin 6 (IL-6), tissue inhibitor of metalloproteinase-1 (TIMP-1) and neutrophil/lymphocyte ratio (NLR). These characteristics were examined using distinctive ensemble-based machine learning classifiers and combination strategies to develop a computer-aided diagnostic system for the non-invasive prediction of glioma cases and their grade. In the first stage, the analysis was conducted to classify glioma cases and control subjects. Machine learning approaches were applied in the second stage to classify the recognised glioma cases into three grades, from grade II, which has a good prognosis, to grade IV, which is also known as glioblastoma. All experiments were evaluated with a five-fold cross-validation method, and the classification results were analysed using different statistical parameters. The proposed approach obtained a high value of accuracy and other statistical parameters compared with other state-of-the-art machine learning classifiers. Therefore, the proposed framework can be utilised for designing other intervention strategies for the prediction of glioma cases and their grades.

摘要

神经胶质瘤是最恶性的神经系统癌症,其组织学分级影响患者的生存。尽管对多模态治疗方法进行了许多研究,但生存时间仍然很短。在这项研究中,提出了一种新的基于集成的机器学习预测框架的两阶段集成,用于神经胶质瘤的检测及其组织学分级分类。在提出的框架中,考虑了属于 135 个主体的五个特征:人端粒酶逆转录酶(hTERT)、几丁质样蛋白(YKL-40)、白细胞介素 6(IL-6)、金属蛋白酶组织抑制剂 1(TIMP-1)和中性粒细胞/淋巴细胞比值(NLR)。使用独特的基于集成的机器学习分类器和组合策略检查这些特征,以开发一种计算机辅助诊断系统,用于非侵入性预测神经胶质瘤病例及其分级。在第一阶段,进行了分析以对神经胶质瘤病例和对照进行分类。在第二阶段,应用机器学习方法将识别出的神经胶质瘤病例分为三个等级,从预后良好的 II 级到预后较差的 IV 级,即胶质母细胞瘤。所有实验均采用五重交叉验证方法进行评估,并使用不同的统计参数分析分类结果。与其他最先进的机器学习分类器相比,所提出的方法获得了高精度和其他统计参数的值。因此,所提出的框架可用于设计其他干预策略,以预测神经胶质瘤病例及其分级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验