Dadgostar Shahram, Mobini Dehkordi Parsa, Khodarahmi Saman, Ghorbani Mohammad Mehdi
Khansar Honey Bee and Herbal Medicines Research Institute University of Isfahan Isfahan Iran.
Khansar Faculty of Computer Science and Mathematics University of Isfahan Isfahan Iran.
Ecol Evol. 2025 Sep 2;15(9):e72101. doi: 10.1002/ece3.72101. eCollection 2025 Sep.
Accurate honey bee subspecies identification is vital for biodiversity conservation and pollination resilience, yet current methods face critical limitations. Classical morphometric techniques, reliant on manual wing vein measurements, suffer from subjectivity and poor scalability across hybrid populations, while deep learning approaches demand extensive labeled datasets and exhibit limited interpretability in noisy field conditions. Crucially, existing methods fail to reconcile scalability with the ability to analyze phenotypic gradients in hybrid specimens. To bridge these gaps, we propose a novel computational framework integrating adaptive image processing with topology-aware clustering to enable scalable, label-free subspecies discrimination. Our pipeline begins with robust image preprocessing using nonlocal means (NLM) denoising and contrast-limited adaptive histogram equalization (CLAHE)-specifically optimized to enhance low-contrast venation patterns in field-collected images-followed by adaptive thresholding and morphological processing to isolate wing veins. Subsequent Zhang-Suen skeletonization extracts graph-based feature maps that uniquely encode both local vein geometry and global network topology, addressing the limitations of traditional morphometrics. Unlike supervised methods, our adaptive hierarchical clustering (AHC) algorithm dynamically infers subspecies clusters without predefined labels, enabling robust discrimination of hybrid populations and phenotypic intermediates. Evaluated on 26,481 wing images, the method achieves a silhouette score of 0.72 and improves classification accuracy by 26.1% over traditional morphometric techniques, demonstrating superior performance in noisy and hybridized datasets. This work resolves a key challenge in apid taxonomy by combining the interpretability of manual methods with the scalability of automation, providing conservationists with a practical tool for ecological monitoring.
准确识别蜜蜂亚种对于生物多样性保护和授粉恢复力至关重要,但目前的方法存在严重局限性。传统的形态测量技术依赖于手动测量翅脉,存在主观性,且在杂交种群中扩展性较差,而深度学习方法需要大量标记数据集,并且在嘈杂的野外条件下解释性有限。至关重要的是,现有方法未能在扩展性与分析杂交标本表型梯度的能力之间取得平衡。为了弥合这些差距,我们提出了一种新颖的计算框架,将自适应图像处理与拓扑感知聚类相结合,以实现可扩展的、无标签的亚种鉴别。我们的流程首先使用非局部均值(NLM)去噪和对比度受限的自适应直方图均衡化(CLAHE)进行强大的图像预处理,这是专门为增强野外采集图像中的低对比度脉序模式而优化的,随后进行自适应阈值处理和形态学处理以分离翅脉。随后的张 - 苏恩细化提取基于图的特征图,该图独特地编码了局部脉几何形状和全局网络拓扑结构,解决了传统形态测量学的局限性。与监督方法不同,我们的自适应层次聚类(AHC)算法无需预定义标签即可动态推断亚种聚类,能够对杂交种群和表型中间类型进行可靠鉴别。在26481张翅图像上进行评估时,该方法的轮廓系数为0.72,比传统形态测量技术的分类准确率提高了26.1%,在嘈杂和杂交数据集中表现出卓越性能。这项工作通过将手动方法的可解释性与自动化的扩展性相结合,解决了蜜蜂分类学中的一个关键挑战,为保护主义者提供了一种用于生态监测的实用工具。