Suppr超能文献

利用简单 X 射线图像预测全膝关节置换术中植入物大小的人工智能模型的开发。

Development of an artificial intelligence model for predicting implant size in total knee arthroplasty using simple X-ray images.

机构信息

Biomedical Research Institute, School of Medicine, Pusan National University, Yangsan, Republic of Korea.

Department of Orthopaedic Surgery, School of Medicine, Pusan National University, Busan, Republic of Korea.

出版信息

J Orthop Surg Res. 2024 Aug 27;19(1):516. doi: 10.1186/s13018-024-05013-2.

Abstract

BACKGROUND

Accurate estimation of implant size before surgery is crucial in preparing for total knee arthroplasty. However, this task is time-consuming and labor-intensive. To alleviate this burden on surgeons, we developed a reliable artificial intelligence (AI) model to predict implant size.

METHODS

We enrolled 714 patients with knee osteoarthritis who underwent total knee arthroplasty from March 2010 to February 2014. All surgeries were performed by the same surgeon using implants from the same manufacturer. We collected 1412 knee anteroposterior (AP) and lateral view x-ray images and retrospectively investigated the implant size. We trained the AI model using both AP and lateral images without any clinical or demographic information and performed data augmentation to resolve issues of uneven distribution and insufficient data. Using data augmentation techniques, we generated 500 images for each size of the femur and tibia, which were then used to train the model. Using data augmentation techniques, we generated 500 images for each size of the femur and tibia, which were then used to train the model. We used ResNet-101 and optimized the model with the aim of minimizing the cross-entropy loss function using both the Stochastic Gradient Descent (SGD) and Adam optimizer.

RESULTS

The SGD optimizer achieved the best performance in internal validation. The model showed micro F1-score 0.91 for femur and 0.87 for tibia. For predicting within ± one size, micro F1-score was 0.99 for femur and 0.98 for tibia.

CONCLUSION

We developed a deep learning model with high predictive power for implant size using only simple x-ray images. This could help surgeons reduce the time and labor required for preoperative preparation in total knee arthroplasty. While similar studies have been conducted, our work is unique in its use of simple x-ray images without any other data, like demographic features, to achieve a model with strong predictive power.

摘要

背景

在全膝关节置换术前准确估计植入物大小至关重要。然而,这项任务既耗时又费力。为了减轻外科医生的负担,我们开发了一种可靠的人工智能(AI)模型来预测植入物大小。

方法

我们纳入了 2010 年 3 月至 2014 年 2 月期间因膝关节骨关节炎接受全膝关节置换术的 714 名患者。所有手术均由同一位外科医生使用同一制造商的植入物进行。我们收集了 1412 例膝关节前后位(AP)和侧位 X 线图像,并回顾性调查了植入物的大小。我们使用 AP 和侧位图像训练 AI 模型,没有任何临床或人口统计学信息,并进行了数据扩充,以解决分布不均和数据不足的问题。使用数据扩充技术,我们为股骨和胫骨的每个尺寸生成了 500 张图像,然后用于训练模型。使用数据扩充技术,我们为股骨和胫骨的每个尺寸生成了 500 张图像,然后用于训练模型。我们使用 ResNet-101 并使用随机梯度下降(SGD)和 Adam 优化器优化模型,目标是最小化交叉熵损失函数。

结果

SGD 优化器在内部验证中表现最佳。该模型在股骨上的微 F1 得分为 0.91,在胫骨上的微 F1 得分为 0.87。对于预测±1 个尺寸内的情况,股骨的微 F1 得分为 0.99,胫骨的微 F1 得分为 0.98。

结论

我们仅使用简单的 X 射线图像开发了一种具有高预测能力的植入物大小深度学习模型。这可以帮助外科医生减少全膝关节置换术前准备所需的时间和劳动力。虽然已经进行了类似的研究,但我们的工作是独一无二的,它使用简单的 X 射线图像而没有任何其他数据,如人口统计学特征,来实现具有强大预测能力的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4557/11348740/44d9064e0526/13018_2024_5013_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验