Suppr超能文献

忍者帽:一种用于功能性近红外光谱和脑电图脑成像的完全可定制且可3D打印的头饰。

ninjaCap: a fully customizable and 3D printable headgear for functional near-infrared spectroscopy and electroencephalography brain imaging.

作者信息

von Lühmann Alexander, Kura Sreekanth, Joseph O'Brien Walker, Zimmermann Bernhard B, Duwadi Sudan, Rogers De'Ja, Anderson Jessica E, Farzam Parya, Snow Cameron, Chen Anderson, Yücel Meryem A, Perkins Nathan, Boas David A

机构信息

Boston University, Neurophotonics Center, Department of Biomedical Engineering, Boston, Massachusetts, United States.

BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.

出版信息

Neurophotonics. 2024 Jul;11(3):036601. doi: 10.1117/1.NPh.11.3.036601. Epub 2024 Aug 27.

Abstract

Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts such as those in electroencephalography (EEG). Custom, manually prepared probe layouts on textile caps are often imprecise and labor intensive. We introduce a method for creating personalized, 3D-printed headgear, enabling the accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts while reducing costs and manual labor. Our approach uses atlas-based or subject-specific head models and a spring-relaxation algorithm for flattening 3D coordinates onto 2D panels, using 10-5 EEG coordinates for reference. This process ensures geometrical fidelity, crucial for accurate probe placement. Probe geometries and holder types are customizable and printed directly on the cap, making the approach agnostic to instrument manufacturers and probe types. Our ninjaCap method offers probe placement accuracy. Over the last five years, we have developed and validated this approach with over 50 cap models and 500 participants. A cloud-based ninjaCap generation pipeline along with detailed instructions is now available at openfnirs.org. The ninjaCap marks a significant advancement in creating individualized neuroimaging caps, reducing costs and labor while improving probe placement accuracy, thereby reducing variability in research.

摘要

准确的传感器放置对于无创脑成像至关重要,特别是对于功能近红外光谱(fNIRS)和扩散光学断层扫描(DOT)而言,它们缺乏脑电图(EEG)那样的标准化布局。在纺织帽上定制的、手工制备的探头布局往往不准确且劳动强度大。我们介绍了一种创建个性化3D打印头饰的方法,能够将3D脑坐标准确转换为2D可打印面板,用于定制fNIRS和EEG传感器布局,同时降低成本和人工劳动。我们的方法使用基于图谱或特定于个体的头部模型以及一种弹簧松弛算法,将3D坐标展平到2D面板上,以10 - 5个EEG坐标作为参考。这一过程确保了几何保真度,这对于准确的探头放置至关重要。探头的几何形状和固定器类型是可定制的,并且可以直接打印在帽子上,使得该方法与仪器制造商和探头类型无关。我们的ninjaCap方法提供了探头放置的准确性。在过去五年中,我们已经用50多个帽子模型和500名参与者开发并验证了这种方法。现在可以在openfnirs.org上获取基于云的ninjaCap生成管道以及详细说明。ninjaCap在创建个性化神经成像帽方面标志着一项重大进步,在降低成本和人工的同时提高了探头放置的准确性,从而减少了研究中的变异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8afa/11348010/352ffcdf45ae/NPh-011-036601-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验